4 coplanar points

Geometry Level 3

Let there exist 3 coplanar points B B , C C , and D D such that B C = 5 BC=5 and C D = 7 CD=7 and B C D = \angle BCD = 12 0 120^\circ . A A is a point in the same plane that lies on the angle bisector of B C D \angle BCD . Then what should be the value of C A CA so that the points B B , A A and D D are collinear?


The answer is 2.92.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ahmad Saad
Aug 9, 2017

Marco Brezzi
Aug 8, 2017

. .

We put the points in a coordinate system such that

C = ( 0 , 0 ) D = ( 7 , 0 ) B = ( 5 cos 120 ° , 5 sin 120 ° ) = ( 5 2 , 5 3 2 ) C=(0,0) \quad D=(7,0) \quad B=(5\cdot\cos{120°},5\cdot\sin{120°})=\left(-\dfrac{5}{2},\dfrac{5\sqrt{3}}{2}\right)

And A A lies on the line r : y = x tan 60 ° = x 3 r:y=x\cdot \tan{60°}=x\sqrt{3}

We now need only to find the intersection between r r and B D BD

The line that passes through B D BD is

y = 5 3 2 0 5 2 7 ( x 7 ) = 5 3 19 ( x 7 ) y = \dfrac{\dfrac{5\sqrt{3}}{2}-0}{-\dfrac{5}{2} - 7}(x-7)=-\dfrac{5\sqrt{3}}{19}(x-7)

To find the intersection

x 3 = 5 3 19 ( x 7 ) x = 35 24 y = 35 3 24 x\sqrt{3}=-\dfrac{5\sqrt{3}}{19}(x-7)\iff x=\dfrac{35}{24}\Longrightarrow y=\dfrac{35\sqrt{3}}{24}

Therefore the lenght of A C AC is

A C = ( 35 24 ) 2 + ( 35 3 24 ) 2 = 35 12 2.92 AC=\sqrt{\left(\dfrac{35}{24}\right)^2+\left(\dfrac{35\sqrt{3}}{24}\right)^2}=\dfrac{35}{12}≈\boxed{2.92}

Aditya Khurmi
Aug 8, 2017

Consider the triangles B C A BCA , A C D ACD and B C D BCD

Now, we use the fact that if in a X Y Z \triangle XYZ if X Y = z , Y Z = x XY=z, YZ=x and Z X = y ZX=y and X Y Z \angle XYZ = 6 0 0 =60^{0} , then y 2 = x 2 + z 2 2 x z c o s 6 0 0 = x 2 + z 2 x z y^{2}=x^{2} + z^{2}-2xz cos 60^{0}=x^{2}+z^{2}-xz

Thus, we get that if C A = a CA=a , then

B A 2 = 5 2 + a 2 5 a BA^{2}=5^{2}+a^{2}-5a and D A 2 = 7 2 + a 2 7 a DA^{2}=7^{2}+a^{2}-7a

By B C D \triangle BCD , B D 2 = 5 2 + 7 2 2 ( 5 ) ( 7 ) c o s 12 0 o = 5 2 + 7 2 + 35 BD^{2}=5^{2} +7^{2}-2(5)(7)cos 120^{o}=5^{2}+7^{2}+35

Now, A lies on BD if and only if B A + A D = B D BA+AD=BD

i.e. 5 2 + a 2 5 a + 7 2 + a 2 7 a = 5 2 + 7 2 + 35 \sqrt{5^{2}+a^{2}-5a} + \sqrt{7^{2}+a^{2}-7a} =\sqrt{5^{2}+7^{2}+35} ( 5 2 + a 2 5 a ) + ( 7 2 + a 2 7 a ) + 2 ( 5 2 + a 2 5 a ) ( 7 2 + a 2 7 a ) = 5 2 + 7 2 + 35 \implies (5^{2}+a^{2}-5a)+(7^{2}+a^{2}-7a)+2\sqrt{(5^{2}+a^{2}-5a)(7^{2}+a^{2}-7a)}=5^{2}+7^{2}+35

( 2 a 2 + 12 a + 35 ) 2 = 4 ( 5 2 + a 2 5 a ) ( 7 2 + a 2 7 a ) \implies (-2a^{2}+12a+35)^{2}=4(5^{2}+a^{2}-5a)(7^{2}+a^{2}-7a)

4 a 4 48 a 3 + 4 a 2 + 840 a + 1225 = 4 a 4 48 a 3 + 436 a 2 1680 a + 4900 \implies 4a^{4}-48a^{3}+4a^{2}+840a+1225=4a^{4}-48a^{3}+436a^{2}-1680a+4900

432 a 2 + 2520 a 3675 = 0 \implies -432a^{2}+2520a-3675=0

a = 35 12 \implies a=\frac{35}{12}

Thus,

C A = 2.92 \boxed {CA=2.92}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...