4 in 5

Geometry Level 3

A square is inscribed in a regular pentagon such that all four vertices touch the pentagon. If the side length of the pentagon is 1 1 and the side length of the square is s s , find 10000 s . \lfloor 10000s \rfloor.


The answer is 10604.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Nov 18, 2020

Consider a general case of a quadrilateral F G H I FGHI inscribed in the unit regular pentagon A B C D E ABCDE . Let F G = I F = s 1 FG=IF = s_1 , F G I F FG \perp IF , F G G H FG \perp GH , I F J = θ \angle IFJ = \theta and G H = s 2 GH=s_2 (note that s 2 > s 1 s_2>s_1 for θ = 5 \theta = 5^\circ as shown in the figure). Then the various angles in terms of θ \theta are as shown. If D F = a DF=a , then E F = 1 a EF = 1-a and F J = 1 + 2 a sin 1 8 FJ = 1+2a \sin 18^\circ . By sine rule , we have:

1 a sin ( 5 4 + θ ) = s 1 sin 10 8 = 1 + 2 a sin 1 8 sin ( 7 2 θ ) s 1 = sin 10 8 ( 2 sin 1 8 + 1 ) sin ( 7 2 θ ) + 2 sin 1 8 sin ( 5 4 + θ ) \frac {1-a}{\sin (54^\circ + \theta)} = \frac {s_1}{\sin 108^\circ} = \frac {1+2a\sin 18^\circ}{\sin (72^\circ -\theta)} \\ \implies s_1 = \frac {\sin 108^\circ (2\sin 18^\circ + 1)}{\sin(72^\circ - \theta) + 2\sin 18^\circ \sin(54^\circ + \theta)}

Let E G = b EG=b . By sine rule, b = s 1 sin ( 1 8 θ ) sin 10 8 b = \dfrac {s_1 \sin (18^\circ - \theta)}{\sin 108^\circ} and

s 2 sin 10 8 = 1 b sin ( 3 6 + θ ) s 2 = sin 10 8 s 1 sin ( 1 8 θ ) sin ( 3 6 + θ ) \begin{aligned} \frac {s_2}{\sin 108^\circ} & = \frac {1-b}{\sin(36^\circ + \theta)} \\ s_2 & = \frac {\sin 108^\circ - s_1 \sin(18^\circ - \theta)}{\sin(36^\circ + \theta)} \end{aligned}

When quadrilateral F G H I FGHI is a square s 2 = s 1 = s s_2 = s_1 = s , then

s 1 = sin 10 8 sin ( 3 6 + θ ) + sin ( 1 8 θ ) sin 10 8 ( 2 sin 1 8 + 1 ) sin ( 7 2 θ ) + 2 sin 1 8 sin ( 5 4 + θ ) = sin 10 8 sin ( 3 6 + θ ) + sin ( 1 8 θ ) ( 2 sin 1 8 + 1 ) ( sin ( 3 6 + θ ) + sin ( 1 8 θ ) ) = sin ( 7 2 θ ) + 2 sin 1 8 sin ( 5 4 + θ ) \begin{aligned} \implies s_1 & = \frac {\sin 108^\circ}{\sin(36^\circ + \theta) + \sin(18^\circ - \theta)} \\ \frac {\sin 108^\circ (2\sin 18^\circ + 1)}{\sin(72^\circ - \theta) + 2\sin 18^\circ \sin(54^\circ + \theta)} & = \frac {\sin 108^\circ}{\sin(36^\circ + \theta) + \sin(18^\circ - \theta)} \\ (2\sin 18^\circ + 1)(\sin(36^\circ + \theta) + \sin(18^\circ - \theta)) & = \sin(72^\circ - \theta) + 2\sin 18^\circ \sin(54^\circ + \theta) \end{aligned}

Solving the equation above, we get θ = 0 \theta = 0^\circ . And s = sin 10 8 sin 3 6 + sin 1 8 1.060497473 10000 s = 10604 s = \dfrac {\sin 108^\circ}{\sin 36^\circ + \sin 18^\circ} \approx 1.060497473 \implies \lfloor 10000s \rfloor = \boxed{10604} .

One of the reasons I love mathematics is that it's such an unexpected platform for creativity. There are so many original ways to approach a problem. Thank you, Chew-Seong, for demonstrating this once again. By the way, I find a certain beauty in your penultimate expression of the solution, sin 10 8 sin 3 8 + sin 1 8 . \dfrac{\sin 108^\circ}{\sin 38^\circ + \sin 18^\circ}.

Fletcher Mattox - 6 months, 3 weeks ago

Log in to reply

You are welcome again.

Chew-Seong Cheong - 6 months, 3 weeks ago

We place the regular pentagon A B C D E ABCDE on the plane so that C D CD lie on the x-axis and a a on the positive part of y-axis. The four vertices P P , Q Q , R R , S S of the square will lay on four of the pentagon’s sides. Let them be C D CD , A B AB , A E AE , and E D ED respectively. From points Q Q , R R and S S we drop perpendicular to the axes, thus forming three congruent right triangles P Q F \triangle PQF , R Q L \triangle RQL and S P G \triangle SPG . Let Q P F = Q R L = P S G = θ \angle QPF=\angle QRL=\angle PSG=\theta . Denote by x x the x-coordinate of P P / and by s s the side length of the square. Then, we have

P ( x , 0 ) Q ( x + s cos θ , s sin θ ) R ( x + s cos θ s sin θ , s sin θ + s cos θ ) S ( x s sin θ , s cos θ ) \begin{aligned} & P\left( x,\ 0 \right) \\ & Q\left( x+s\cdot \cos \theta ,\ s\cdot \sin \theta \right) \\ & R\left( x+s\cdot \cos \theta -s\cdot \sin \theta ,\ s\cdot \sin \theta +s\cdot \cos \theta \right) \\ & S\left( x-s\cdot \sin \theta ,\ s\cdot \cos \theta \right) \\ \end{aligned} The y-coordinate of vertex A A is the height of the pentagon, thus A ( 0 , 5 + 2 5 2 ) A\left( 0,\ \frac{\sqrt{5+2\sqrt{5}}}{2} \right) .

The equations of line A B AB is

y = ( tan 36 ) x + 5 + 2 5 2 y = 5 2 5 x + 5 + 2 5 2 y=-\left( \tan 36{}^\circ \right)x+\frac{\sqrt{5+2\sqrt{5}}}{2}\Leftrightarrow y=-\sqrt{5-2\sqrt{5}}x+\frac{\sqrt{5+2\sqrt{5}}}{2}

The equations of line A E AE is

y = ( tan 36 ) x + 5 + 2 5 2 y = 5 2 5 x + 5 + 2 5 2 y=\left( \tan 36{}^\circ \right)x+\frac{\sqrt{5+2\sqrt{5}}}{2}\Leftrightarrow y=\sqrt{5-2\sqrt{5}}x+\frac{\sqrt{5+2\sqrt{5}}}{2}

The equations of line D E DE is

y = ( tan 108 ) ( x + 1 2 ) x y = 5 + 2 5 ( x + 1 2 ) y=\left( \tan 108{}^\circ \right)\left( x+\frac{1}{2} \right)x\Leftrightarrow y=-\sqrt{5+2\sqrt{5}}\left( x+\frac{1}{2} \right)

Since Q A B Q\in AB , R A E R\in AE and S D E S\in DE , we get the system { s sin θ = 5 2 5 ( x + s cos θ ) + 5 + 2 5 2 s sin θ + s cos θ = 5 2 5 ( x s sin θ + s cos θ ) + 5 + 2 5 2 s cos θ = 5 + 2 5 ( x s sin θ + 1 2 ) \left\{ \begin{aligned} s\cdot \sin \theta & =-\sqrt{5-2\sqrt{5}}\left( x+s\cdot \cos \theta \right)+\frac{\sqrt{5+2\sqrt{5}}}{2} \\ s\cdot \sin \theta +s\cdot \cos \theta & =\sqrt{5-2\sqrt{5}}\left( x-s\cdot \sin \theta +s\cdot \cos \theta \right)+\frac{\sqrt{5+2\sqrt{5}}}{2} \\ s\cdot \cos \theta & =-\sqrt{5+2\sqrt{5}}\left( x-s\cdot \sin \theta +\frac{1}{2} \right) \\ \end{aligned} \right. Settting y = s sin θ y=s\cdot \sin \theta and z = s cos θ z=s\cdot \cos \theta , we come to a linear 3x3 system:

{ y = 5 2 5 ( x + z ) + 5 + 2 5 2 y + z = 5 2 5 ( x y + z ) + 5 + 2 5 2 z = 5 + 2 5 ( x y + 1 2 ) \left\{ \begin{aligned} y & =-\sqrt{5-2\sqrt{5}}\left( x+z \right)+\frac{\sqrt{5+2\sqrt{5}}}{2} \\ y+z & =\sqrt{5-2\sqrt{5}}\left( x-y+z \right)+\frac{\sqrt{5+2\sqrt{5}}}{2} \\ z & =-\sqrt{5+2\sqrt{5}}\left( x-y+\frac{1}{2} \right) \\ \end{aligned} \right. which solves to

x 0.402113032590307 , y 1.00859303213020 , z 0.327711741622372 x\approx 0.402113032590307,\text{ }y\approx 1.00859303213020,\text{ }z\approx 0.327711741622372 Now we have,
s 2 = s 2 ( sin 2 θ + cos 2 θ ) = ( s sin θ ) 2 + ( s cos θ ) 2 = y 2 + z 2 ( 1.00859303213020 ) 2 + ( 0.327711741622372 ) 2 = 1.12465489005875 \begin{aligned} & {{s}^{2}} ={{s}^{2}}\cdot \left( {{\sin }^{2}}\theta +{{\cos }^{2}}\theta \right) \\ & ={{\left( s\cdot \sin \theta \right)}^{2}}+{{\left( s\cdot \cos \theta \right)}^{2}} \\ & ={{y}^{2}}+{{z}^{2}} \\ & \approx {{\left( 1.00859303213020 \right)}^{2}}+{{\left( 0.327711741622372 \right)}^{2}} \\ & =1.12465489005875 \\ \end{aligned} Hence, s = 1.12465489005875 1.06049747291484 s=\sqrt{1.12465489005875}\approx 1.06049747291484 .

For the answer, 10000 s = 10604 \left\lfloor 10000s \right\rfloor =\boxed{10604} .

I think your insight regarding the three congruent triangles is ingenious. I wish I had noticed that. And a beautiful exposition. Thank you, Thanos.

Fletcher Mattox - 6 months, 3 weeks ago

Log in to reply

Thank you Fletcher. I'm glad you like it.

Thanos Petropoulos - 6 months, 3 weeks ago
Fletcher Mattox
Nov 16, 2020

While I can't prove it, I'm pretty certain the square must be oriented symmetrically to the pentagon, i.e. a side of the square must be parallel to a side of the pentagon, as in the figure. In fact, I suspect this is the only way to inscribe a square. If someone knows, I'd be grateful to learn more.

Symmetry implies J B H \triangle JBH is isosceles, and thus J B = B H . JB = BH. Let L B LB bisect A B C . \angle ABC.

Since B = 10 8 , S H B = 3 6 , F H C = ( 18 0 9 0 3 6 ) = 5 4 . \angle B = 108^\circ,\enspace\angle SHB = 36^\circ ,\enspace\angle FHC = (180^\circ - 90^\circ -36^\circ) = 54^\circ.

Similarly H F C = ( 18 0 5 4 10 8 ) = 1 8 . \angle HFC = (180^\circ - 54^\circ - 108^\circ) = 18^\circ.

Let s = J H s = JH and x = J B . x = JB.

Using the law of sines on H F C , s sin 10 8 = 1 x sin 1 8 . \triangle HFC,\hspace{1cm} \dfrac{s}{\sin 108^\circ} = \dfrac{1 - x}{\sin 18^\circ}.

From the right J L B , s = 2 x cos 3 6 \triangle JLB,\enspace s = 2x\cdot\cos 36^\circ

Substituting for s , 2 x cos 3 6 sin 10 8 = 1 x sin 1 8 s,\hspace{1cm}\dfrac{2x\cos 36^\circ}{\sin 108^\circ} = \dfrac{1-x}{\sin 18^\circ}

Let k = cos 3 6 sin 1 8 sin 10 8 x = 1 2 k + 1 k = \dfrac{\cos 36^\circ\sin 18^\circ}{\sin 108^\circ} \implies x = \dfrac{1}{2k+1}

Evaluating , x = 1 2 ( 5 5 2 5 2 5 ) 0.655423 \enspace x = \frac{1}{2}(5 - \sqrt{5} - 2\sqrt{5 - 2\sqrt{5}}) \approx 0.655423

Evaluating , s = 5 1 2 ( 5 5 ) 1.060497 \enspace s = \sqrt{5} - \sqrt{\frac{1}{2}(5 - \sqrt{5})} \approx 1.060497

So the requested answer is 10604 \boxed {10604}

Your intuition about the existence of a square oriented this way is correct. We can easily use a continuity argument as the animation implies. The uniqueness of this solution is not obvious to me. That's why, in the solution I'm about to post, I use a different approach.

Thanos Petropoulos - 6 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...