⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ x + y + u = 4 y + u + v = − 5 u + v + x = 0 v + x + y = − 8
Let x , y , u and v be numbers satisfying the system of equations above. Find the product x y u v .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Very nice! Couldn't have shown it better myself!
Log in to reply
Thanks ⌣ ¨
I did the same way...
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ u + 0 + x + y = 4 u + v + 0 + y = − 5 u + v + x + 0 = 0 0 + v + x + y = − 8 . . . ( 1 ) . . . ( 2 ) . . . ( 3 ) . . . ( 4 )
( 1 ) + ( 2 ) + ( 3 ) + ( 4 ) : 3 ( u + v + x + y ) ⟹ u + v + x + y = − 9 = − 3
Now, consider:
( 1 ) : u + 0 + x + y u + v + x + y − v − 3 − v ⟹ v = 4 = 4 = 4 = − 7
Similarly,
( 2 ) : u + v + 0 + y ⟹ x = − 5 = 2
( 3 ) : u + v + x + 0 ⟹ y = 0 = − 3
( 4 ) : 0 + v + x + y ⟹ u = − 8 = 5
⟹ x y u v = ( 2 ) ( − 3 ) ( 5 ) ( − 7 ) = 2 1 0
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Systems of Linear Equations - Substitution
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ x + y + u = 4 y + u + v = − 5 u + v + x = 0 v + x + y = − 8 ⟹ 1 ⟹ 2 ⟹ 3 ⟹ 4
1 + 2 + 3 + 4 :
3 x + 3 y + 3 u + 3 v = 4 + ( − 5 ) + 0 + ( − 8 ) 3 ( x + y + u + v ) = − 9 x + y + u + v = − 3 ⟹ 5
Substitute 1 into 5 :
4 + v = − 3 ⟹ v = − 7
Substitute 2 into 5 :
− 5 + x = − 3 ⟹ x = 2
Substitute 3 into 5 :
0 + y = − 3 ⟹ y = − 3
Substitute 4 into 5 :
− 8 + u = − 3 ⟹ u = 5
Therefore, x y u v = ( 2 ) ( − 3 ) ( 5 ) ( − 7 ) = 2 1 0