Every Equation Is Missing Something

Algebra Level 2

{ x + y + u = 4 y + u + v = 5 u + v + x = 0 v + x + y = 8 \large{\begin{cases} x + y + u = 4 \\ y + u + v = -5 \\ u + v +x = 0 \\ v + x + y = -8 \end{cases}}

Let x , y , u x,y,u and v v be numbers satisfying the system of equations above. Find the product x y u v xyuv .​


The answer is 210.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hung Woei Neoh
May 31, 2016

Relevant wiki: Systems of Linear Equations - Substitution

{ x + y + u = 4 1 y + u + v = 5 2 u + v + x = 0 3 v + x + y = 8 4 \begin{cases}x+y+u=4 &\implies\boxed{1}\\ y+u+v = -5&\implies\boxed{2}\\ u+v+x=0&\implies\boxed{3}\\ v+x+y=-8 &\implies\boxed{4}\end{cases}

1 + 2 + 3 + 4 \boxed{1}+\boxed{2}+\boxed{3}+\boxed{4} :

3 x + 3 y + 3 u + 3 v = 4 + ( 5 ) + 0 + ( 8 ) 3 ( x + y + u + v ) = 9 x + y + u + v = 3 5 3x+3y+3u+3v = 4+(-5)+0+(-8)\\ 3(x+y+u+v) = -9\\ x+y+u+v = -3 \implies\boxed{5}

Substitute 1 \boxed{1} into 5 \boxed{5} :

4 + v = 3 v = 7 4+v = -3 \implies v=-7

Substitute 2 \boxed{2} into 5 \boxed{5} :

5 + x = 3 x = 2 -5+x= -3 \implies x=2

Substitute 3 \boxed{3} into 5 \boxed{5} :

0 + y = 3 y = 3 0+y= -3 \implies y=-3

Substitute 4 \boxed{4} into 5 \boxed{5} :

8 + u = 3 u = 5 -8+u= -3 \implies u=5

Therefore, x y u v = ( 2 ) ( 3 ) ( 5 ) ( 7 ) = 210 xyuv = (2)(-3)(5)(-7) = \boxed{210}

Very nice! Couldn't have shown it better myself!

Finn C - 5 years ago

Log in to reply

Thanks ¨ \ddot \smile

Hung Woei Neoh - 5 years ago

Log in to reply

Haha... :)

Finn C - 5 years ago

I did the same way...

Fidel Simanjuntak - 4 years, 8 months ago
Chew-Seong Cheong
Jun 10, 2016

{ u + 0 + x + y = 4 . . . ( 1 ) u + v + 0 + y = 5 . . . ( 2 ) u + v + x + 0 = 0 . . . ( 3 ) 0 + v + x + y = 8 . . . ( 4 ) \begin{cases} u + 0 + x + y = 4 & ... (1) \\ u + v + 0 + y = -5 & ... (2) \\ u + v + x + 0 = 0 & ... (3) \\ 0 + v + x + y = -8 & ... (4) \end{cases}

( 1 ) + ( 2 ) + ( 3 ) + ( 4 ) : 3 ( u + v + x + y ) = 9 u + v + x + y = 3 \begin{aligned} (1)+(2)+(3)+(4): \quad 3(u+v+x+y) & = - 9 \\ \implies u+v+x+y & = - 3 \end{aligned}

Now, consider:

( 1 ) : u + 0 + x + y = 4 u + v + x + y v = 4 3 v = 4 v = 7 \begin{aligned} (1): \quad u + 0 + x + y & = 4 \\ u + v + x + y - v & = 4 \\ -3 - v & = 4 \\ \implies v & = - 7 \end{aligned}

Similarly,

( 2 ) : u + v + 0 + y = 5 x = 2 \begin{aligned} (2): \quad u + v + 0 + y & = -5 \\ \implies x & = 2 \end{aligned}

( 3 ) : u + v + x + 0 = 0 y = 3 \begin{aligned} (3): \quad u + v + x + 0 & = 0 \\ \implies y & = -3 \end{aligned}

( 4 ) : 0 + v + x + y = 8 u = 5 \begin{aligned} (4): \quad 0 + v + x + y & = -8 \\ \implies u & = 5 \end{aligned}

x y u v = ( 2 ) ( 3 ) ( 5 ) ( 7 ) = 210 \implies xyuv = (2)(-3)(5)(-7) = \boxed{210}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...