S = 1 + 3 1 − 5 1 − 7 1 + 9 1 + 1 1 1 − 1 3 1 − 1 5 1 + …
If S can be expressed as B π A for positive integers A , B , submit the value of A + B as your answer.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
It should be |x| < 1 and not -1 < x < 1. because x= e^(i pi/4) is not a real number, so it doesn't fit the criteria.
The summation is equal to :
S = r = 1 ∑ ∞ 4 r + 1 ( − 1 ) r + 4 r + 3 ( − 1 ) r = ∫ 0 1 1 + x 4 1 + 1 + x 4 x 2 d x
Put x − x 1 = y to get :
S = ∫ − ∞ 0 y 2 + 2 d y = 2 1 2 π = 8 π
How did you go from the sum to the integral?
Problem Loading...
Note Loading...
Set Loading...
We note that:
ln ( 1 − x 1 + x ) ln ( 1 − e i 4 π 1 + e i 4 π ) ℑ [ ln ( 1 − e i 4 π 1 + e i 4 π ) ] ⇒ S ⇒ A + B = 2 x + 3 2 x 3 + 5 2 x 5 + 7 2 x 7 + 9 2 x 9 + 1 1 2 x 1 1 + 1 3 2 x 1 3 + . . . for ∣ x ∣ < 1 = 2 e i 4 π + 3 2 e i 4 3 π + 5 2 e i 4 5 π + 7 2 e i 4 7 π + 9 2 e i 4 9 π + 1 1 2 e i 4 1 1 π + 1 3 2 e i 4 1 3 π + . . . = 2 sin 4 π + 3 2 sin 4 3 π + 5 2 sin 4 5 π + 7 2 sin 4 7 π + 9 2 sin 4 9 π + 1 1 2 sin 4 1 1 π + . . . = 2 ( 1 + 3 1 − 5 1 − 7 1 + 9 1 + 1 1 1 − 1 3 1 − 1 5 1 + . . . ) = 2 S = 2 1 ℑ [ ln ( 1 − e i 4 π 1 + e i 4 π ) ] = 2 1 ℑ [ ln ( 1 − 2 1 − i 2 1 1 + 2 1 + i 2 1 ) ] = 2 1 ℑ [ ln ( 2 − 1 − i 2 + 1 + i ) ] = 2 1 ℑ [ ln ( i ( 2 + 1 ) ) ] = 2 1 ℑ [ ln ( 2 + 1 ) + ln ( i ) ] = 2 1 ℑ [ ln ( 2 + 1 ) + i 2 π ] = 2 1 × 2 π = 8 π = 9