400 Followers Problem - Reciprocal Summations 2

Calculus Level 5

S = ( 1 + 1 2 + 1 3 ) ( 1 4 + 1 5 + 1 6 ) + ( 1 7 + 1 8 + 1 9 ) ( 1 10 + 1 11 + 1 12 ) + \large{S = \left( 1 + \dfrac{1}{2} + \dfrac{1}{3} \right) - \left( \dfrac{1}{4} + \dfrac{1}{5} + \dfrac{1}{6} \right) + \left( \dfrac{1}{7} + \dfrac{1}{8} + \dfrac{1}{9} \right) - \left( \dfrac{1}{10} + \dfrac{1}{11} + \dfrac{1}{12} \right) + \ldots }

If S S can be expressed as:

A B C π D + ln ( E ) F \large{\dfrac{A\sqrt{B}}{C}\pi^D + \dfrac{\ln(E)}{F} }

for positive integers A , B , C , D , E , F A,B,C,D,E,F where gcd ( A , C ) = 1 \gcd(A,C)=1 and B , E B,E aren't any m t h m^{th} power of a positive integer with m Z , m 2 m \in \mathbb Z, \ m \geq 2 .

Submit the value of A + B + C + D + E + F A+B+C+D+E+F as your answer.


Also try these:
400 Followers Problem - Reciprocal Summations #1
400 Followers Problem - Reciprocal Summations #3


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Ronak Agarwal
Jan 1, 2016

Wait it's not tedious :

S can be written as :

S = r = 0 ( 1 ) r 3 r + 1 + r = 0 ( 1 ) r 3 r + 2 + r = 0 ( 1 ) r 3 r + 2 \displaystyle S = \sum _{ r=0 }^{ \infty }{ \frac { { (-1) }^{ r } }{ 3r+1 } } +\sum _{ r=0 }^{ \infty }{ \frac { { (-1) }^{ r } }{ 3r+2 } } +\sum _{ r=0 }^{ \infty }{ \frac { { (-1) }^{ r } }{ 3r+2 } }

S = r = 0 ( 1 ) r 0 1 x 3 r d x + r = 0 ( 1 ) r 0 1 x 3 r + 1 d x + r = 0 ( 1 ) r 0 1 x 3 r + 2 d x \Rightarrow \displaystyle S = \sum _{ r=0 }^{ \infty }{ { (-1) }^{ r }\int _{ 0 }^{ 1 }{ { x }^{ 3r }dx } } +\sum _{ r=0 }^{ \infty }{ { (-1) }^{ r }\int _{ 0 }^{ 1 }{ { x }^{ 3r+1 }dx } } +\sum _{ r=0 }^{ \infty }{ { (-1) }^{ r }\int _{ 0 }^{ 1 }{ { x }^{ 3r+2 }dx } }

Interchanging summation and integral we have :

S = 0 1 ( 1 + x + x 2 ) r = 0 ( 1 ) r ( x 3 r ) d x \displaystyle S = \int _{ 0 }^{ 1 }{ (1+x+{ x }^{ 2 })\sum _{ r=0 }^{ \infty }{ { (-1) }^{ r }({ x }^{ 3r }) } dx }

S = 0 1 ( 1 + x + x 2 ) 1 + x 3 d x \Rightarrow \displaystyle S = \int _{ 0 }^{ 1 }{ \frac { (1+x+{ x }^{ 2 }) }{ 1+{ x }^{ 3 } } dx }

Doing this is easy :

S = 0 1 x 2 1 + x 3 d x + 0 1 d x x 2 x + 1 \displaystyle S = \int _{ 0 }^{ 1 }{ \frac { { x }^{ 2 } }{ 1+{ x }^{ 3 } } dx } +\int _{ 0 }^{ 1 }{ \frac { dx }{ { x }^{ 2 }-x+1 } }

These integrals are quite trivial and hence we have the answer as :

S = ( 1 3 ln ( x 3 + 1 ) + 2 3 arctan ( 2 x 1 3 ) ) 0 1 = 2 3 π 9 + ln ( 2 ) 3 \displaystyle S = \left( \frac { 1 }{ 3 } \ln { ({ x }^{ 3 }+1) } +\frac { 2 }{ \sqrt { 3 } } \arctan { \left( \frac { 2x-1 }{ \sqrt { 3 } } \right) } \right) { | }_{ 0 }^{ 1 }=\frac { 2\sqrt { 3 } \pi }{ 9 } +\frac { \ln { (2) } }{ 3 }

Same method :) !!

Sumanth R Hegde - 4 years, 6 months ago
Kartik Sharma
Sep 24, 2015

By observing that after every 6 terms, the sign comes back, we can see

S = k = 0 1 6 k + 1 + k = 0 1 6 k + 2 + k = 0 1 6 k + 3 k = 0 1 6 k + 4 k = 0 1 6 k + 5 k = 0 1 6 k + 6 \displaystyle S = \sum_{k=0}^{\infty}{\frac{1}{6k+1}} + \sum_{k=0}^{\infty}{\frac{1}{6k+2}} + \sum_{k=0}^{\infty}{\frac{1}{6k+3}} - \sum_{k=0}^{\infty}{\frac{1}{6k+4}} - \sum_{k=0}^{\infty}{\frac{1}{6k+5}} - \sum_{k=0}^{\infty}{\frac{1}{6k+6}}

A really simple way would be to use digamma function and I will do the easiest.

We know ψ ( s + 1 ) = 0 1 1 x s 1 x d x γ \displaystyle \psi(s+1) = \int_{0}^{1}{\frac{1-x^s}{1-x} \ dx} - \gamma

k = 0 1 6 k + m + 1 = 0 1 x m 1 x 6 d x \displaystyle \sum_{k=0}^{\infty}{\frac{1}{6k+m+1}} = \int_{0}^{1}{\frac{x^m}{1-x^6} \ dx}

k = 0 1 6 k + 1 + k = 0 1 6 k + 2 + k = 0 1 6 k + 3 k = 0 1 6 k + 4 k = 0 1 6 k + 5 k = 0 1 6 k + 6 = \displaystyle \sum_{k=0}^{\infty}{\frac{1}{6k+1}} + \sum_{k=0}^{\infty}{\frac{1}{6k+2}} + \sum_{k=0}^{\infty}{\frac{1}{6k+3}} - \sum_{k=0}^{\infty}{\frac{1}{6k+4}} - \sum_{k=0}^{\infty}{\frac{1}{6k+5}} - \sum_{k=0}^{\infty}{\frac{1}{6k+6}} =

1 6 ( 0 1 t 5 / 6 1 t + t 4 / 6 1 t + t 3 / 6 1 t t 2 / 6 1 t t 1 / 6 1 t t 0 / 6 1 t d t ) \displaystyle \frac{1}{6} \left(\int_{0}^{1}{\frac{{t}^{-5/6}}{1-t} + \frac{{t}^{-4/6}}{1-t} + \frac{{t}^{-3/6}}{1-t} - \frac{{t}^{-2/6}}{1-t} - \frac{{t}^{-1/6}}{1-t} - \frac{{t}^{-0/6}}{1-t} \ dt}\right)

= 1 6 ( ψ ( 1 5 6 ) + ψ ( 1 4 6 ) + ψ ( 1 3 6 ) ψ ( 1 2 6 ) ψ ( 1 1 6 ) ψ ( 1 0 6 ) ) \displaystyle = -\frac{1}{6}\left(\psi\left(1 -\frac{5}{6}\right) + \psi\left(1 -\frac{4}{6}\right) + \psi\left(1 -\frac{3}{6}\right) - \psi\left(1 -\frac{2}{6}\right) - \psi\left(1 -\frac{1}{6}\right) - \psi\left(1 -\frac{0}{6}\right)\right)

= 1 6 ( ψ ( 1 ) + ψ ( 5 6 ) + ψ ( 4 6 ) ψ ( 3 6 ) ψ ( 2 6 ) ψ ( 1 6 ) ) \displaystyle = \frac{1}{6}\left(\psi\left(1\right) + \psi\left(\frac{5}{6}\right) + \psi\left(\frac{4}{6}\right) - \psi\left(\frac{3}{6}\right) - \psi\left(\frac{2}{6}\right) - \psi\left(\frac{1}{6}\right)\right)

= 2 3 9 π + ln ( 2 ) 3 \displaystyle = \frac{2\sqrt{3}}{9}\pi + \frac{\ln(2)}{3}

Riemann's Rearrangement theorem says that we cannot separate brackets and perform the calculation.

Praneeth Kacham - 5 years, 8 months ago

Log in to reply

@Kartik Sharma Hm... that's true, but either ways the answer to this question is still correct since it isn't necessary to split.

Julian Poon - 5 years, 8 months ago

This is so tedious...

Julian Poon - 5 years, 8 months ago

Log in to reply

Yeah! It's tedious!

Satyajit Mohanty - 5 years, 8 months ago

Log in to reply

Why you make it so tedious????

Sharky Kesa - 5 years, 8 months ago

Substituting cube roots of unity and eliminating also gives the same answer.

shaurya gupta - 5 years, 6 months ago
Carlos Victor
Dec 6, 2015

The sum is equal to S= x +y + z, where x = 1 - 1/4 + 1/7- 1/10 + 1/13 - ...=pi.sqrt(3)/9 + ln(2)/3 , y = 1/2 - 1/5 + 1/8 - 1/11 + ... = pi.sqrt(3)/9 - ln(2)/3 , z = 1/3 - 1/6 +1/9 - 1/12 + ... = ln(2)/3. So S = 2.pi.sqrt(3)/9 + ln(2)/3.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...