45 ° 45° is everywhere

Geometry Level 2

M M and N N are points on hypotenuse A B AB of right triangle A B C ABC such that A M = 3 , N B = 4. AM=3, NB= 4.

If all three of the yellow angles measure the same, what is the area of A B C ? \triangle ABC?


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Since C A B = C B A \angle CAB = \angle CBA , it follows that A C = B C AC = BC . If we take N B C \triangle NBC and rotate it clockwise by 90 ° 90° about point C C , side B C BC will completely overlap side A C AC , point B B will end up in point A A , and point N N will end up in a point marked as E E . Now, we have that:

A C B = 90 ° C A M = C B N = E A C = 45 ° E A M = E A C + C A M = 90 ° \angle ACB = 90° \rightarrow \angle CAM = \angle CBN = \angle EAC = 45° \rightarrow \angle EAM = \angle EAC + \angle CAM = 90° .

E A M \triangle EAM is a right triangle, and by Pythagorean Theorem: E M = E A 2 + A M 2 = 5 EM = \sqrt{EA^2 + AM^2} = 5 .

Now, C E M \triangle CEM and C M N \triangle CMN are congruent, because:

  • E C M = E C A + A C M = N C B + A C M = A C B M C N = 45 ° = M C N \angle ECM = \angle ECA + \angle ACM = \angle NCB + \angle ACM = \angle ACB - \angle MCN = 45° = \angle MCN
  • E C = C N EC = CN
  • side C M CM is common to both of these triangles.

From this, it must be that: M N = E M = 5 MN = EM = 5 . So:

  • A B = A M + M N + N B = 3 + 5 + 4 = 12 AB = AM + MN + NB = 3 + 5 + 4 = 12

  • A C = B C = A B 2 AC = BC = \dfrac{AB}{\sqrt{2}}

  • P = A C 2 2 = A B 2 4 = 36 P = \dfrac{AC^2}{2} = \dfrac{AB^2}{4} = \boxed{36}

Chew-Seong Cheong
Jun 30, 2017

Since A C B = 9 0 \angle ACB = 90^\circ then A = B = 4 5 = M C N \angle A = \angle B = 45^\circ = \angle MCN . Let A C = a AC=a . Since A = B \angle A = \angle B then A C = B C = a AC=BC=a . Let A C M = θ \angle ACM = \theta , then C M A = 18 0 4 5 θ = 13 5 θ \angle CMA = 180^\circ - 45^\circ - \theta = 135^\circ - \theta . By sine rule : A C A M = a 3 = sin C M A sin A C M = sin ( 13 5 θ ) sin θ \dfrac {AC}{AM} = \dfrac a3 = \dfrac {\sin \angle CMA}{\sin \angle ACM} = \dfrac {\sin (135^\circ - \theta)}{\sin \theta}

And N C B = 9 0 4 5 θ = 4 5 θ \angle NCB = 90^\circ - 45^\circ - \theta = 45^\circ - \theta and C N B = 18 0 4 5 ( 4 5 θ ) = 9 0 + θ \angle CNB = 180^\circ - 45^\circ - (45^\circ - \theta) = 90^\circ + \theta . By sine rule again: B C N B = a 4 = sin ( 9 0 + θ ) sin ( 4 5 θ ) \dfrac {BC}{NB} = \dfrac a4 = \dfrac {\sin (90^\circ + \theta)}{\sin (45^\circ - \theta)} .

Then we have:

a = 3 sin ( 13 5 θ ) sin θ = 4 sin ( 9 0 + θ ) sin ( 4 5 θ ) 3 ( 1 2 cos θ + 1 2 sin θ ) sin θ = 4 cos θ 1 2 cos θ 1 2 sin θ 3 2 ( cos 2 θ sin 2 θ ) = 4 sin θ cos θ 3 2 cos 2 θ = 2 sin 2 θ tan 2 θ = 3 4 2 tan θ 1 tan 2 θ = 3 4 3 tan 2 θ + 8 tan θ 3 = 0 ( 3 tan θ 1 ) ( tan θ + 3 ) = 0 tan θ = 1 3 As θ < 9 0 \begin{aligned} a = \frac {3\sin (135^\circ - \theta)}{\sin \theta} & = \frac {4\sin (90^\circ + \theta)}{\sin (45^\circ - \theta)} \\ \frac {3\left(\frac 1{\sqrt 2}\cos \theta + \frac 1{\sqrt 2}\sin \theta\right)}{\sin \theta} & = \frac {4\cos \theta}{\frac 1{\sqrt 2}\cos \theta - \frac 1{\sqrt 2}\sin \theta} \\ \frac 32 (\cos^2 \theta - \sin^2 \theta) & = 4 \sin \theta \cos \theta \\ \frac 32 \cos 2\theta & = 2 \sin 2 \theta \\ \implies \tan 2\theta & = \frac 34 \\ \frac {2 \tan \theta}{1-\tan^2 \theta} & = \frac 34 \\ 3\tan^2 \theta +8\tan \theta - 3 & = 0 \\ (3\tan \theta -1)(\tan \theta + 3) & = 0 \\ \implies \tan \theta & = \frac 13 \quad \quad \small \color{#3D99F6} \text{As } \theta < 90^\circ \end{aligned}

Now we have:

a = 4 sin ( 9 0 + θ ) sin ( 4 5 θ ) = 4 cos θ 1 2 cos θ 1 2 sin θ = 4 2 1 tan θ = 4 2 1 1 3 = 6 2 \begin{aligned} a & = \frac {4\sin (90^\circ + \theta)}{\sin (45^\circ - \theta)} = \frac {4\cos \theta}{\frac 1{\sqrt 2}\cos \theta - \frac 1{\sqrt 2}\sin \theta} = \frac {4\sqrt 2}{1-\tan \theta} = \frac {4\sqrt 2}{1-\frac 13} = 6\sqrt 2 \end{aligned}

Therefore, the area of A B C \triangle ABC : A = a 2 2 = 36 A = \dfrac {a^2}2 = \boxed{36} .

Áron Bán-Szabó
Jun 29, 2017

We reflect A A to M C MC line. If we get the Q Q point, then

Q C = A C , Q C M = A C M . QC=AC, \angle QCM=\angle ACM.

We reflect B B to N C NC line. If we get the R R point, then

R C = B C , R C N = B C N RC=BC, \angle RCN=\angle BCN .

If A C M = α \angle ACM=\alpha , then Q C M = α \angle QCM=\alpha , and if B C N = β \angle BCN=\beta , then R C N = β \angle RCN=\beta .

If Q Q and R R is not the same point, then M C N = α + β + Q C R \angle MCN=\alpha+\beta+\angle QCR or M C N = α + β Q C R \angle MCN=\alpha+\beta-\angle QCR . (It depends on that Q Q is near to B B and R R is near to A A , or inversely.) We know that M C N = 45 ° \angle MCN=45° , so A C B = 90 ° Q C R \angle ACB=90°-\angle QCR or A C B = 90 ° + Q C R \angle ACB=90°+\angle QCR . But A C B = 90 ° \angle ACB=90° , so it is impossible unless Q Q and R R is the same point. (Let P P the point which was R R and Q Q .) By the reflection we get:

M P C = M A C = 45 ° \angle MPC=\angle MAC=45°

N P C = N B C = 45 ° \angle NPC=\angle NBC=45°

M P N = M P C + N P C = M A C + N B C = 90 ° \angle MPN=\angle MPC+\angle NPC=\angle MAC+\angle NBC=90°

So the N M P NMP triangle is right-angled. Using Pythagoras-theorem: M N 2 = P M 2 + P N 2 . MN^2=PM^2+PN^2.

Since P M = A M PM=AM and P N = N B PN=NB , M N 2 = A M 2 + N B 2 MN^2=AM^2+NB^2 . So M N = M N 2 = 3 2 + 4 2 = 5 MN=\sqrt{MN^2}=\sqrt{3^2+4^2}=5 .

From that A B = 3 + 4 + 5 = 12 AB=3+4+5=12 and

[ A B C ] = A B A B 2 2 = 36 [ABC]=\dfrac{AB*\dfrac{AB}{2}}{2}=\boxed{36}

No trigonometry, a beautiful solution

Ilan Amity - 3 years, 10 months ago
Steve Shaff
Aug 13, 2017

Note that A C N = A C M + M C N = A C M + C A M = C M B \angle ACN = \angle ACM + \angle MCN = \angle ACM + \angle CAM = \angle CMB and A = B \angle A = \angle B so A C N B M C \triangle ACN \sim \triangle BMC . Since A C B \triangle ACB is 4 5 4 5 9 0 45^\circ -45^\circ-90^\circ , we have B C = A C BC =AC , A B = A C 2 AB = AC \sqrt{2} and M N = A B A M N B = A C 2 7 MN = AB - AM -NB = AC\sqrt {2} - 7 , from which it follows that A N = A M + M N = A C 2 4 AN = AM + MN = AC\sqrt{2} - 4 and M B = M N + N B = A C 2 3 MB = MN + NB = AC\sqrt{2} - 3 . From the stated similarity, A C B M = A N B C \frac {AC}{BM} = \frac{AN}{BC} . Substituting into this last proportion yields A C A C 2 3 = A C 2 4 A C \frac {AC}{AC\sqrt{2}-3}=\frac{AC\sqrt{2}-4}{AC} . Now solve for A C AC to obtain A C = 2 AC = \sqrt{2} , an impossibility, or A C = 6 2 AC = 6\sqrt{2} . This last value implies the requested area is A C 2 2 = 36 \frac{AC^2}{2 }= 36 .

Let A M = p AM=p , M N = r MN=r , and N B = q NB=q . We will first show the interesting fact that p 2 + q 2 = r 2 p^2+q^2=r^2 .

Draw N P \overline{NP} so that N P = N B NP=NB and C N P = C N B \angle CNP=\angle CNB . Draw C P \overline{CP} .

C N B C N P \triangle CNB\cong\triangle CNP by SAS, so C P = C B CP=CB and P C N = B C N \angle PCN=\angle BCN . Now draw P M \overline{PM} .

Now A C M = A C B M C N N C B = 9 0 4 5 N C B = 4 5 N C B \angle ACM=\angle ACB-\angle MCN-\angle NCB=90^\circ-45^\circ-\angle NCB=45^\circ-\angle NCB = M C N P C N = P C M =\angle MCN-\angle PCN=\angle PCM .

So A C M = P C M \angle ACM=\angle PCM and C P = C B = C A CP=CB=CA , so A C M P C M \triangle ACM\cong\triangle PCM by SAS. Thus, P M = A M = p PM=AM=p .

Triangle M P N MPN is a right triangle because C P M = C A M = 4 5 \angle CPM=\angle CAM=45^\circ and C P N = C B N = 4 5 \angle CPN=\angle CBN=45^\circ .

So P M = p PM=p , N P = q NP=q , and M N = r MN=r , and by the Pythagorean Theorem, p 2 + q 2 = r 2 p^2+q^2=r^2 .

Now, getting back to the original problem, p = 3 p=3 and q = 4 q=4 , so r = 5 r=5 . Therefore, A B = 12 AB=12 which implies that the area of A B C = 36 \triangle ABC=36 .

Manos Kothris
Aug 13, 2017

Let M N = x , A C = B C = y MN=x , AC=BC=y

Pythagorean theorem on Δ A B C ΔABC

( x + 7 ) 2 = y 2 + y 2 x 2 + 14 x + 49 = 2 y 2 (x+7)^2=y^2+y^2\Leftrightarrow x^2+14x+49=2y^2 (1)

.

Δ A N C Δ B C M \Delta ANC\approx \Delta BCM

A C B M = A N B C y x + 4 = x + 3 y y 2 = x 2 + 7 x + 12 \frac{AC}{BM}=\frac{AN}{BC}\Leftrightarrow \frac{y}{x+4}=\frac{x+3}{y}\Leftrightarrow y^2=x^2+7x+12 (2)

.

From (1) and (2) x = 5 x = 5 and y 2 = 72 y^2=72

The area of Δ A B C ΔABC is : [ A B C ] = y 2 2 = 72 2 = 36 [ABC]=\frac{y^2}{2}=\frac{72}{2}= 36

Daniel Cheng
Aug 12, 2017

Let O O be the midpoint of side A B ˉ \bar{AB} , then it is obvious it's the perpendicular bisector, hence, A O ˉ \bar{AO} = B O ˉ \bar{BO} = C O ˉ \bar{CO} = x, then since M C N \angle MCN is 45,
t a n 1 ( x 3 x tan^{-1}(\frac{x-3}{x} ) + t a n 1 ( x 4 x tan^{-1}(\frac{x-4}{x} ) = π 4 \frac{\pi}{4}

then using t a n ( a + b ) = t a n ( a ) + t a n ( b ) 1 t a n ( a ) t a n ( b ) tan(a+b) = \frac{tan(a)+tan(b)}{1-tan(a)tan(b)} ,

t a n ( t a n 1 ( x 3 x tan( tan^{-1}(\frac{x-3}{x} ) + t a n 1 ( x 4 x tan^{-1}(\frac{x-4}{x} )) = tan( π 4 \frac{\pi}{4} )

t a n ( t a n 1 ( x 3 x ) ) + t a n ( t a n 1 ( x 4 x ) ) 1 t a n ( t a n 1 ( x 3 x ) ) t a n ( t a n 1 ( x 4 x ) ) \frac{ tan(tan^{-1}(\frac{x-3}{x} )) + tan(tan^{-1}( \frac{x-4}{x} )) }{1- tan(tan^{-1}( \frac{x-3}{x}))tan(tan^{-1}(\frac{x-4}{x} )) } =1 ,

resulting in a quadratic equation: \

1 3 x + 1 4 x 1 ( 1 3 x ) ( 1 4 x ) = 1 \frac{ 1 - \frac{3}{x} + 1 - \frac{4}{x} } { 1- (1-\frac{3}{x})(1-\frac{4}{x}) } =1

whose solution is x = 6 x = 6 , hence the area is A = 1 2 2 x x = x 2 = 6 2 = 36 A=\frac{1}{2}*2x*x = x^2 = 6^2 = 36

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...