499 Followers Problem

Calculus Level 4

1 / 3 1 / 3 cos 1 ( 2 x 1 + x 2 ) + tan 1 ( 2 x 1 x 2 ) e x + 1 d x \large \int_{-{1} / {\sqrt{3}}}^{{1} / {\sqrt{3}}}\frac{\cos^{-1}\left ( \frac{2x}{1+x^{2}} \right )+\tan^{-1}\left ( \frac{2x}{1-x^{2}} \right )}{e^{x}+1} \, dx

If the integral above can be expressed in the form

π A B , \dfrac{ \pi}{A\sqrt B} ,

where A A and B B are positive integers with B B square-free, find A + B A+B .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Swagat Panda
Jul 12, 2017

Let

I = 1 / 3 1 / 3 cos 1 ( 2 x 1 + x 2 ) + tan 1 ( 2 x 1 x 2 ) e x + 1 d x = 1 / 3 1 / 3 cos 1 ( 2 x 1 + x 2 ) + sin 1 ( 2 x 1 + x 2 ) e x + 1 d x ( tan 1 ( 2 x 1 x 2 ) = sin 1 ( 2 x 1 + x 2 ) ; ) = 1 / 3 1 / 3 π 2 ( e x + 1 ) d x ( Using the identity sin 1 a + cos 1 a = π 2 ; where a ϵ [ 1 , 1 ] ) = 1 2 . π 2 1 / 3 1 / 3 1. d x ( 1 / 3 1 / 3 1 ( e x + 1 ) d x = 1 2 1 / 3 1 / 3 1. d x ) = π 4 . [ x ] 1 / 3 1 / 3 = 2 π 4 3 = π 2 3 A + B = 5 \begin{aligned} I&= \displaystyle{ \int_{{-1}/{\sqrt{3}}}^{{1}/{\sqrt{3}}}\dfrac{\cos^{-1}\left ( \dfrac{2x}{1+x^{2}} \right )+\tan^{-1}\left ( \dfrac{2x}{1-x^{2}} \right )}{e^{x}+1} \, \mathrm{d}x} \\&= \displaystyle{ \int_{{-1}/{\sqrt{3}}}^{{1}/{\sqrt{3}}}\dfrac{\cos^{-1}\left ( \dfrac{2x}{1+x^{2}} \right )+\sin^{-1}\left ( \dfrac{2x}{1+x^{2}} \right )}{e^{x}+1} \, \mathrm{d}x} & \left( \small \color{#3D99F6} \tan^{-1}\left ( \dfrac{2x}{1-x^{2}} \right)=\sin^{-1} \left( \dfrac{2x}{1+x^{2}} \right); \right) \\&= \displaystyle{ \int_{{-1}/{\sqrt{3}}}^{{1}/{\sqrt{3}}}\dfrac{\pi}{2\left( e^x+1\right)} \, \mathrm{d}x} & \left( \small \color{#3D99F6} \text{Using the identity } \sin^{-1}{a}+\cos^{-1}{a}= \dfrac{\pi}{2}; \text{ where } a \epsilon [-1,1] \right) \\&=\dfrac{1}{2}.\dfrac{\pi}{2}\displaystyle{ \int_{{-1}/{\sqrt{3}}}^{{1}/{\sqrt{3}}}1. \, \mathrm{d}x} & \left( \small \color{#3D99F6} \displaystyle{ \int_{{-1}/{\sqrt{3}}}^{{1}/{\sqrt{3}}}\dfrac{1}{\left( e^x+1\right)} \, \mathrm{d}x}=\dfrac{1}{2}\displaystyle{ \int_{{-1}/{\sqrt{3}}}^{{1}/{\sqrt{3}}}1.\mathrm{d}x} \right) \\&=\dfrac{\pi}{4}.\left[x \right]_{-1/\sqrt3}^{1/\sqrt3} \\&=\dfrac{2\pi}{4\sqrt3}=\boxed{\dfrac{\pi}{2\sqrt3}} \\& \boxed{A+B = 5} \end{aligned}

Note: tan 1 ( 2 x 1 x 2 ) = sin 1 ( 2 x 1 + x 2 ) \tan^{-1}\left ( \dfrac{2x}{1-x^{2}} \right)=\sin^{-1} \left( \dfrac{2x}{1+x^{2}} \right) ; because in a right triangle with sides ( 1 + x 2 ) , ( 1 x 2 ) (1+x^2), (1-x^2) and 2 x 2x , the given relation holds true.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...