Tangents Of Angle Progression

Geometry Level 3

tan 2 1 + tan 2 3 + tan 2 5 + + tan 2 8 7 + tan 2 8 9 = ? \large \tan^2 1^\circ + \tan^2 3^\circ + \tan^2 5^\circ + \cdots+ \tan^2 87^\circ + \tan^2 89^\circ = \ ?


The answer is 4005.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Mendrin
Jul 19, 2016

Relevant wiki: Proving Trigonometric Identities - Intermediate

First, we look up List of Trigonometric Identies to pull out this multiple angle Cosine expansion, for even n n

cos ( n θ ) = k = 0 1 2 n ( ( 1 ) k ( n 2 k ) ( cos ( θ ) ) n 2 k ( sin ( θ ) ) 2 k ) \cos\left( n\theta \right) =\displaystyle \sum _{ k=0 }^{ \frac{1}{2}n }{ \left( { \left( -1 \right) }^{ k }\left( \begin{matrix} n \\ 2k \end{matrix} \right) { \left( \cos\left( \theta \right) \right) }^{ n-2k }{ \left( \sin\left( \theta \right) \right) }^{ 2k } \right) }

which, after dividing both sides by ( cos ( θ ) ) n { \left( \cos\left( \theta \right) \right) }^{ n} , we have

cos ( n θ ) ( cos ( θ ) ) n = k = 0 1 2 n ( ( 1 ) k ( n 2 k ) x k ) \dfrac { \cos\left( n\theta \right) }{ { \left( \cos\left( \theta \right) \right) }^{ n } } =\displaystyle\sum _{ k=0 }^{ \frac{1}{2} n }{ \left( { \left( -1 \right) }^{ k }\left( \begin{matrix} n \\ 2k \end{matrix} \right) x^{ k } \right) }

where x = tan 2 θ x=\tan^2 \theta

Letting n = 90 n=90 , for every odd angle θ \theta in degrees the left side of the equation

cos ( n θ ) ( cos ( θ ) ) n \dfrac { \cos\left( n\theta \right) }{ { \left( \cos\left( \theta \right) \right) }^{ n } }

is 0 0 .

Hence x = tan 2 θ x=\tan^2 \theta for every odd angle θ \theta in degrees are roots of the degree 45 45 polynomial on the right

k = 0 1 2 n ( ( 1 ) k ( n 2 k ) x k ) \displaystyle\sum _{ k=0 }^{ \frac{1}{2} n }{ \left( { \left( -1 \right) }^{ k }\left( \begin{matrix} n \\ 2k \end{matrix} \right) x^{ k } \right) }

and so using Vieta’s Formula , the sum of the 45 45 such roots is the negative of the 2 2 nd coefficient, or

( 1 ) 1 ( 90 2 ( 1 ) ) = 4005 -{ \left( -1 \right) }^{ 1 }\left( \begin{matrix} 90 \\ 2\left( 1 \right) \end{matrix} \right) =4005

Ramiel To-ong
Dec 1, 2016

nice solution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...