4th Order RLC (3-20-2020)

An RLC circuit is excited by a DC voltage source V S V_S . At time t = 0 t = 0 , the inductors and capacitors are de-energized. The current flowing out of the source is I S I_S . Define the cumulative energy supplied by the source as follows:

E S ( t ) = 0 t V S ( t ) I S ( t ) d t E_S(t) = \int_0^t V_S(t)\, I_S(t) \, dt

Let I S m a x I_{Smax} and I S m i n I_{Smin} be the largest and smallest values of the source current over all time, respectively. Let E S m a x E_{Smax} be the largest value of E S ( t ) E_S(t) over all time, and let E S E_{S \infty} be the limiting value of E S ( t ) E_S(t) as the elapsed time approaches infinity.

Determine the value of the quantity Q Q :

Q = I S m a x I S m i n E S m a x E S Q = I_{Smax} \, I_{Smin} \, \frac{E_{Smax}}{E_{S \infty}}

Details and Assumptions:
1) V S = 10 V_S = 10
2) R 1 = R 2 = L 1 = L 2 = C 1 = C 2 = 1 R_1 = R_2 = L_1 = L_2 = C_1 = C_2 = 1
3) I S m i n I_{Smin} is negative. The other three quantities are positive


The answer is -5.66.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Mar 20, 2020

Let's use the impedances in the Laplace form. Since the ratio voltage-current in an inductor with indutance L L is: V ( t ) = L d i ( t ) d t V(t) = L\frac{di(t)}{dt} , in the laplace domain the ratio V ( s ) I ( s ) \frac{V(s)}{I(s)} is L s L s . Likewise this ratio for a capacitor with capacitance C C is 1 C s \frac{1}{Cs} and for a resistor with resistance R R is just R R . So, the total impedance of this circuit is ( / / // means impedances in parallel):

Z ( s ) = ( 1 s / / 1 ) + s + 1 s + ( s / / 1 ) \large \displaystyle Z(s) = \left ( \frac{1}{s} // 1 \right ) + s + \frac{1}{s} + ( s//1 )

Z ( s ) = 1 s 1 1 s + 1 + s + 1 s + s 1 s + 1 \large \displaystyle Z(s) = \frac{\frac{1}{s} \cdot 1}{\frac{1}{s} + 1} + s + \frac{1}{s} + \frac{s \cdot 1}{s + 1}

Z ( s ) = 1 s + 1 + s + 1 s + s s + 1 \large \displaystyle Z(s) = \frac{1}{s+ 1} + s + \frac{1}{s} + \frac{s}{s + 1}

Z ( s ) = s 2 + s + 1 s \large \displaystyle Z(s) = \frac{s^2 + s + 1}{s}

The current in the laplace domain will be:

I S ( s ) = V S ( s ) Z ( s ) \large \displaystyle I_S(s) = \frac{V_S(s)}{Z(s)}

Since the input voltage is a step of amplitude 10 10 , V S ( s ) = 10 s V_S(s) = \frac{10}{s} . So:

I S ( s ) = 10 s 2 + s + 1 \large \displaystyle I_S(s) = \frac{10}{s^2+s+1}

I S ( s ) = 20 3 3 4 ( s + 1 2 ) 2 + 3 4 \large \displaystyle I_S(s) = \frac{20}{\sqrt{3}} \cdot \frac{\sqrt{\frac34}}{\left (s+\frac12 \right )^2 + \frac34}

In the time domain:

I S ( t ) = 20 3 e t 2 sin ( t 3 2 ) \large \displaystyle I_S(t) = \frac{20}{\sqrt{3}} e^{- \frac{t}{2} } \sin \left ( \frac{t \sqrt{3}}{2} \right )

Differentiating and making in equal to 0, one gets that the solutions are in the form:

tan ( t 3 2 ) = 3 \large \displaystyle \tan \left ( \frac{t \sqrt{3}}{2} \right ) = \sqrt{3}

Or:

t 3 2 = π 3 + k π \large \displaystyle \frac{t \sqrt{3}}{2} = \frac{\pi}{3} + k \pi

t = 2 π 3 3 ( 1 + 3 k ) \large \displaystyle t = \frac{2 \pi}{3 \sqrt{3}} (1 + 3k)

Where k is an integer. Our maximum I S m a x I_{Smax} occurs when k = 0 k = 0 and our minimum I S m i n I_{Smin} occurs when k = 1 k = 1 . So:

I S m a x = 10 e π 3 3 5.46293 \color{#20A900} \boxed{ \large \displaystyle I_{Smax} = 10 e^{- \frac{\pi}{3 \sqrt{3}} } \approx 5.46293 }

I S m i n = 10 e 4 π 3 3 0.89064 \color{#20A900} \boxed{ \large \displaystyle I_{Smin} = - 10 e^{- \frac{4 \pi}{3 \sqrt{3}} } \approx -0.89064}

Our quantity E s ( t ) E_s(t) will be:

E s ( t ) = 200 3 0 t e t 2 sin ( t 3 2 ) d t \large \displaystyle E_s(t) = \frac{200}{\sqrt{3}} \int_0^t e^{- \frac{t}{2} } \sin \left ( \frac{t \sqrt{3}}{2} \right ) dt

After integration by parts twice:

E s ( t ) = 100 200 3 e t 2 sin ( t 3 2 + π 3 ) \large \displaystyle E_s(t) = 100 - \frac{200}{\sqrt{3}} e^{- \frac{t}{2} } \sin \left ( \frac{t \sqrt{3}}{2} + \frac{\pi}{3} \right )

Since the exponential will go to 0 0 as t t goes to \infty , it's easy to see that:

E S = 100 \color{#20A900} \boxed{ \large E_{S \infty} = 100}

For E S m a x E_{Smax} , differentiating and making it equal to 0 0 , one gets that the solutions are in the form:

tan ( t 3 2 + π 3 ) = 3 \large \displaystyle \tan \left ( \frac{t \sqrt{3}}{2} + \frac{\pi}{3} \right ) = \sqrt{3}

Or:

t 3 2 + π 3 = π 3 + k π \large \displaystyle \frac{t \sqrt{3}}{2} + \frac{\pi}{3} = \frac{\pi}{3} + k \pi

t = 2 k π 3 \large \displaystyle t = \frac{2k \pi}{\sqrt{3}}

At k = 0 k=0 we will actually have E S m i n = 0 E_{Smin} = 0 , and E S m a x E_{Smax} will be attained at k = 1 k=1 :

E S m a x = 100 ( 1 + e π 3 ) 116.30335 \color{#20A900} \boxed{ \large \displaystyle E_{Smax} = 100 ( 1 + e^{- \frac{\pi}{\sqrt{3}} } ) \approx 116.30335}

Calculating Q Q :

Q = 100 ( 1 + e π 3 ) e 5 π 3 5.65875 \color{#3D99F6} \boxed { \large \displaystyle Q = -100 \left ( 1 + e^{- \frac{\pi}{\sqrt{3}}} \right ) e^{- \frac{5\pi}{\sqrt{3}}} \approx - 5.65875 }

@Guilherme Niedu How to do Laplace transformation?? Please

A Former Brilliant Member - 1 year, 1 month ago

Log in to reply

@Neeraj Anand Badgujar it's an integral involving the function and an exponential. It has a lot of properties. It's better for you to read here: https://en.wikipedia.org/wiki/Laplace_transform

Guilherme Niedu - 1 year, 1 month ago
Steven Chase
Mar 20, 2020

@Guilherme Niedu has given a very nice Laplace solution. I will show the state-space formulation that can be used in conjunction with numerical integration. Express the time derivatives of state variables ( V C 1 , V C 2 , I L 1 , I L 2 ) (V_{C1}, V_{C2}, I_{L1}, I_{L2}) in terms of the state variables and the forcing function (the source). Once the solution routine is written, it is trivial to find energies, maximum quantities, etc.

For capacitor 1:

I R 1 = V C 1 R 1 I C 1 = I L 1 I R 1 V ˙ C 1 = I C 1 C 1 I_{R1} = \frac{V_{C1}}{R_1} \\ I_{C1} = I_{L1} - I_{R1} \\ \dot{V}_{C1} = \frac{I_{C1}}{C_1}

For capacitor 2:

I C 2 = I L 1 V ˙ C 2 = I C 2 C 2 I_{C2} = I_{L1} \\ \dot{V}_{C2} = \frac{I_{C2}}{C_2}

For inductor 1:

I R 2 = I L 1 I L 2 V R 2 = R 2 I R 2 V L 1 = ( V S V C 1 ) ( V R 2 + V C 2 ) I ˙ L 1 = V L 1 L 1 I_{R2} = I_{L1} - I_{L2} \\ V_{R2} = R_2 I_{R2} \\ V_{L1} = (V_S - V_{C1}) - (V_{R2} + V_{C2}) \\ \dot{I}_{L1} = \frac{V_{L1}}{L_1}

For inductor 2:

V L 2 = V R 2 I ˙ L 2 = V L 2 L 2 V_{L2} = V_{R2} \\ \dot{I}_{L2} = \frac{V_{L2}}{L_2}

Source Current:
I S = I L 1 I_S = I_{L1}

Numerical integration (Euler, for example):

V C 1 ( k ) = V C 1 ( k 1 ) + V ˙ C 1 ( k 1 ) Δ t V C 2 ( k ) = V C 2 ( k 1 ) + V ˙ C 2 ( k 1 ) Δ t I L 1 ( k ) = I L 1 ( k 1 ) + I ˙ L 1 ( k 1 ) Δ t I L 2 ( k ) = I L 2 ( k 1 ) + I ˙ L 2 ( k 1 ) Δ t V_{C1 \, (k)} = V_{C1 \, (k-1)} + \dot{V}_{C1 \, (k-1)} \, \Delta t \\ V_{C2 \, (k)} = V_{C2 \, (k-1)} + \dot{V}_{C2 \, (k-1)} \, \Delta t \\ I_{L1 \, (k)} = I_{L1 \, (k-1)} + \dot{I}_{L1 \, (k-1)} \, \Delta t \\ I_{L2 \, (k)} = I_{L2 \, (k-1)} + \dot{I}_{L2 \, (k-1)} \, \Delta t

Just solved this one. Even I took a numerical route. The analytical solution posted by @Guilherme Niedu is impressive. Attached below is a plot showing the current and source energy variation with time.

Edited comment. The unit of energy shown in the plot is incorrect. It should have been hecto-joule [hJ] instead of deci-joule [dJ].

Karan Chatrath - 1 year, 2 months ago

@Steven Chase can you please provide me the code of your solution of this problem?
Thanks in advance

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...