5 Days to 2016 Make it and Bake it

Geometry Level 4

If in a triangle A B C ABC an angle bisector is drawn from A A to B C BC such that it cuts B C BC at D D . If B A D = 1 5 \angle BAD = 15^{\circ} and A B C = 4 5 o \angle ABC =45^{o} . If A D = 5 6 AD=5\sqrt{6} and the area of the triangle can be expressed as m n + p \large{ \frac{m}{\sqrt{n}+p} } , for some positive integers ( m , n , p ) (m, n, p) . Find m + n + p m+n+p .


The answer is 239.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aditya Chauhan
Dec 27, 2015

Angles of the triangle: A=30 , B= 45,C= 105.

By sine rule a sin A = b sin B = c sin C \dfrac{a}{\sin{A}}=\dfrac{b}{\sin{B}}=\dfrac{c}{\sin{C}}

2 a = 2 b = 2 2 c 3 + 1 2a=\sqrt{2}b=\dfrac{2\sqrt{2}c}{\sqrt{3}+1}

c = 3 + 1 2 b c=\dfrac{\sqrt{3}+1}{2}b

Length of angle bisector

AD= 2 b c b + c cos ( A 2 ) = 5 6 \dfrac{2bc}{b+c}\cos(\dfrac{A}{2}) = 5\sqrt{6}

= 2 × b × b ( 3 + 1 2 ) b + b 3 + 1 2 \dfrac{2 \times b \times b(\dfrac{\sqrt{3}+1}{2})}{b+b\dfrac{\sqrt{3}+1}{2}}

b = 30 3 + 1 \dfrac{30}{\sqrt{3}+1}

Area = b 2 × sin A × sin C 2 × sin B \dfrac{b^{2} \times \sin{A} \times \sin{C}}{2 \times \sin{B}}

= 225 2 3 + 2 = 225 12 + 2 \dfrac{225}{2\sqrt{3}+2}=\dfrac{225}{\sqrt{12}+2}

Therefore , m + n + p = 225 + 12 + 2 = 239 m+n+p = 225 + 12 + 2 =\boxed{239}

Your way is very nice, but I first determined Base BC, and dropped Perpendicular from A, which created an isosceles right-triangle.

Department 8 - 5 years, 5 months ago

same way buddy

Kaustubh Miglani - 5 years, 5 months ago

Typo in last line. 225+12+ 2 =239.

Niranjan Khanderia - 5 years, 3 months ago

s . . . A D C = 60 , C A D = 15 , D C A = 105 S i n 105 = 6 + 2 4 A p p l y i n g S i n R u l e b = S i n B a S i n A : Δ A D C . . . A C = S i n 60 5 6 S i n 105 , Δ A B C . . . A C = S i n 45 B C S i n 30 , B C = S i n 60 5 6 S i n 105 S i n 30 S i n 45 h , t h e f r o m A o n B C , = 5 6 S i n 60. A r e a Δ A B C = 1 2 B C h = 1 2 S i n 60 5 6 S i n 105 S i n 30 S i n 45 5 6 S i n 60 A r e a Δ A B C = 225 2 ( 3 + 1 ) = 225 12 + 2 . m + n + p = 225 + 12 + 2 = 239 \angle s ~~...ADC=60, ~~~~CAD=15, ~~~~DCA=105~ ~~Sin105=\dfrac{\sqrt6 +\sqrt2} 4~~\\ Applying~ Sin ~Rule~~b=SinB*\dfrac a {SinA}:-\\ \Delta ~ADC~...AC=Sin60*\dfrac{5\sqrt6}{Sin105}, ~~~~\Delta ~ABC~... AC=Sin45*\dfrac {BC}{Sin30}, \\ \therefore~BC= Sin60*\dfrac{5\sqrt6}{Sin105}*\dfrac{Sin30}{Sin45}\\ h, ~the ~ \bot ~from ~ A ~ on ~BC, =5\sqrt6*Sin60.\\ Area ~\Delta ~ABC=\frac 1 2 *BC*h\\ =\frac 1 2* Sin60* \dfrac{5\sqrt6}{Sin105}*\dfrac{Sin30}{Sin45}*5\sqrt6*Sin60\\ Area ~\Delta ~ABC= \dfrac{225}{2(\sqrt3+1)}= \dfrac{225}{\sqrt{12}+2}.~~\\ m+n+p=225+12+2=\Large~~~\color{#D61F06}{239}

Your way is very nice, but I first determined Base BC, and dropped Perpendicular from A, which created an isosceles right-triangle.

Department 8 - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...