#5 Measure your Calibre

Algebra Level 4

x 100 x 100 = 5 \large \left \lfloor \frac x{100} \left \lfloor \frac x{100} \right \rfloor \right \rfloor = 5

Find the number of integer solutions to the equation above.

Notation: \lfloor \cdot \rfloor denotes the floor function .


Other problems: Check your Calibre


The answer is 50.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

x 100 x 100 = 5 \lfloor\frac{x}{100}\lfloor\frac{x}{100}\rfloor\rfloor=5

If x 100 = t \frac{x}{100}=t

t t = 5 \lfloor t\lfloor t \rfloor \rfloor=5

5 t t < 6 5 \leq t\lfloor t \rfloor < 6 ...(1)

( t 1 ) < t t (t-1) < \lfloor t \rfloor \leq t

Multiplying t,

t ( t 1 ) < t t t 2 t(t-1) < t\lfloor t \rfloor \leq t^2

Combining the 2 inequalities, we get

t ( t 1 ) < t t < 6 t(t-1) < t\lfloor t \rfloor <6 And 5 t t t 2 5 \leq t\lfloor t \rfloor \leq t^2

So we can see that 5 t 2 5 \leq t^2 And t ( t 1 ) < 6 t(t-1)<6 .

2.23 < t 2.23 < |t| And 2 < t < 3 -2<t<3

We can see that only solutions will be between 2.23 < t < 3 2.23<t<3

So put t = 2 \lfloor t \rfloor=2 in (1)

5 t 2 < 6 5 \leq t*2 < 6

2.5 t < 3 2.5 \leq t < 3

x 100 = t \frac{x}{100}=t So

250 x < 300 250 \leq x < 300

x ( 250 , 251 , . . . , 299 x \in (250,251,...,299

*50 numbers *

I think you forgot about negative integers

Aakash Khandelwal - 4 years, 3 months ago

Log in to reply

Till I obtained the 2 inequalities, 2.23 < t 2.23 < |t| And 2 < t < 3 -2<t<3 I have considered the possibility that t is negative. Then, Only positive t satisfy both inequations simultanoeusly.

Ajinkya Shivashankar - 4 years, 3 months ago

observe -2 < t < 3 t can take values of -2 and 3 so , this expression is wrong you took floor function t as 2 but it could be 3

akarsh jain - 4 years, 2 months ago

Log in to reply

I added a few extra steps.

If t ( t 1 ) < 6 t(t-1)<6 then t 2 t 6 < 0 t^2-t-6<0 and ( t 3 ) ( t + 2 ) < 0 (t-3)(t+2)<0 so 1 bracket is +ve and other is -ve so 2 < t < 3 -2<t<3

If it were t ( t 1 ) 6 t(t-1)\leq 6 then t can take values of -2 and 3

Ajinkya Shivashankar - 4 years, 2 months ago

x 100 x 100 = 5 Let u = x 100 u u = 5 Note that u = u + { u } ( u + { u } ) u = 5 u 2 + u { u } = 5 \begin{aligned} \left \lfloor \frac x{100} \left \lfloor \frac x{100} \right \rfloor \right \rfloor & = 5 & \small \color{#3D99F6} \text{Let }u = \frac x{100} \\ \left \lfloor u \left \lfloor u \right \rfloor \right \rfloor & = 5 & \small \color{#3D99F6} \text{Note that }u = \lfloor u \rfloor + \{u\} \\ \left \lfloor (\lfloor u \rfloor + \{u\}) \left \lfloor u \right \rfloor \right \rfloor & = 5 \\ \lfloor u \rfloor^2 + \left \lfloor \lfloor u \rfloor \{u\} \right \rfloor & = 5 \end{aligned}

Since 0 { x } < 1 0 \le \{x\} < 1 .

u 2 5 u 2 + u 1 \lfloor u \rfloor^2 \le 5 \le \lfloor u \rfloor^2 + \lfloor u \rfloor - 1 { 2 u 2 u 2 + u 6 0 u 3 u 2 \implies \begin{cases} - 2 \le \lfloor u \rfloor \le 2 \\ \lfloor u \rfloor^2 + \lfloor u \rfloor - 6 \ge 0 & \implies \lfloor u \rfloor \le - 3 \cup \lfloor u \rfloor \ge 2 \end{cases} u = 2 \implies \lfloor u \rfloor = 2 . When u = 2 \lfloor u \rfloor = 2 ,

2 2 + 2 { u } = 5 2 { u } = 1 0.5 { u } < 1 2.5 u < 3 Note that 100 u = x 250 x 299 For integer values \begin{aligned} 2^2 + \left \lfloor 2 \{u\} \right \rfloor & = 5 \\ \left \lfloor 2 \{u\} \right \rfloor & = 1 \\ \implies 0.5 \le \{u\} & < 1 \\ 2.5 \le u & < 3 & \small \color{#3D99F6} \text{Note that }100u = x \\ 250 \le x & \le 299 & \small \color{#3D99F6} \text{For integer values} \end{aligned}

Therefore, there are 50 \boxed{50} integer solutions.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...