5 Olympic rings

Geometry Level 4

Five unit circles are inscribed in a semicircle in a symmetrical way, as shown.

Find the radius of the semicircle.


The answer is 3.828.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let's put another unit circle on top of the existing circles as shown below:

E O P = α O E = 1 sin α = O C 1 = O A 1 = O A 2 . \angle{EOP}=\alpha \Rightarrow |OE|=\frac{1}{\sin{\alpha}}=|OC_{1}|=|OA_{1}|=|OA_{2}|.

C 1 O E = 2 α O E A 3 = A 3 O E = 9 0 α O A 3 E = 2 α \angle{C_{1}OE}=2\alpha \Rightarrow \angle{OEA_{3}}=\angle{A_{3}OE}=90^\circ-\alpha \Rightarrow \angle{OA_{3}E}=2\alpha .

A 1 A 3 C 1 B A_{1}A_{3}C_{1}B is parallelepiped, so A 3 B C 1 \angle{A_{3}BC_{1}} should be 2 α 2\alpha .

Solution 1: A 1 B C 1 = 4 α , A 1 O C 1 = 18 0 6 α \Rightarrow \angle{A_{1}BC_{1}}=4\alpha, \angle{A_{1}OC_{1}}=180^\circ-6\alpha

Cosine rule for finding trianlge sides: A 1 C 1 = x |A_{1}C_{1}|=x

A 1 C 1 2 = A 1 B 2 + C 1 B 2 2 A 1 B C 1 B cos 4 α x 2 = 2 2 + 2 2 2 2 2 cos 4 α x 2 = 8 ( 1 cos 4 α ) |A_{1}C_{1}|^2=|A_{1}B|^2+|C_{1}B|^2-2\cdot|A_{1}B|\cdot|C_{1}B|\cdot\cos{4\alpha} \Rightarrow x^2=2^2+2^2-2\cdot2\cdot2\cdot\cos{4\alpha} \Rightarrow x^2=8\cdot(1-\cos{4\alpha})

A 1 C 1 2 = O A 1 2 + O C 1 2 2 O A 1 O C 1 cos ( 18 0 6 α ) x 2 = ( 1 sin α ) 2 + ( 1 sin α ) 2 2 1 sin α 1 sin α cos ( 18 0 6 α ) = 2 sin 2 α ( 1 + cos 6 α ) |A_{1}C_{1}|^2=|OA_{1}|^2+|OC_{1}|^2-2\cdot|OA_{1}|\cdot|OC_{1}|\cdot\cos{(180^\circ-6\alpha)} \Rightarrow x^2=\left(\frac{1}{\sin{\alpha}}\right)^2+\left(\frac{1}{\sin{\alpha}}\right)^2-2\cdot\frac{1}{\sin{\alpha}}\cdot\frac{1}{\sin{\alpha}}\cdot\cos{(180^\circ-6\alpha)}=\frac{2}{\sin^2{\alpha}}\cdot(1+\cos{6\alpha})

x 2 = 8 ( 1 cos 4 α ) = 2 sin 2 α ( 1 + cos 6 α ) = 4 1 cos 2 α ( 1 + cos 6 α ) 2 ( 1 cos 4 α ) ( 1 cos 2 α ) = 1 + cos 6 α \Rightarrow x^2=8\cdot(1-\cos{4\alpha})=\frac{2}{\sin^2{\alpha}}\cdot(1+\cos{6\alpha})=\frac{4}{1-\cos{2\alpha}}\cdot(1+\cos{6\alpha}) \Rightarrow 2\cdot(1-\cos{4\alpha})\cdot(1-\cos{2\alpha})=1+\cos{6\alpha}

cos 4 α = 2 cos 2 2 α 1 ; cos 6 α = 4 cos 3 2 α 3 cos 2 α \cos{4\alpha}=2\cos^2{2\alpha}-1; \cos{6\alpha}=4\cos^3{2\alpha}-3\cos{2\alpha}

( cos 2 α = a ) : 2 ( 2 2 a 2 ) ( 1 a ) = 1 + 4 a 3 3 a 4 a 2 + a 3 = 0 ( a + 1 ) ( 4 a 3 ) = 0 a = 3 4 . (\cos{2\alpha}=a): \Rightarrow 2(2-2a^2)(1-a)=1+4a^3-3a \Rightarrow 4a^2+a-3=0 \Rightarrow (a+1)(4a-3)=0 \Rightarrow a=\frac{3}{4}.

c o s 2 α = 3 4 = 1 sin 2 α sin α = 1 8 O E = 1 sin α = 8 . R = O K = O E + E K cos{2\alpha}=\frac{3}{4}=1-\sin^2{\alpha} \Rightarrow \sin{\alpha}=\frac{1}{\sqrt{8}} \Rightarrow |OE|=\frac{1}{\sin{\alpha}}=\sqrt{8}. \Rightarrow R=|OK|=|OE|+|EK| \Rightarrow R = 8 + 1 3.828 R=\sqrt{8}+1 \approx 3.828

Solution 2: I later realized the easiest way to find the value of sin α \sin{\alpha} .

O A 3 E E O C 1 A 3 E O C 1 = O E E C 1 1 sin α 4 = 2 1 sin α 1 sin α = 8 = O E = O C 1 R = O E + E K = 8 + 1 3.828 \triangle{OA_{3}E}\sim\triangle{EOC_{1}} \Rightarrow \frac{|A_{3}E|}{|OC_{1}|}=\frac{|OE|}{|EC_{1}|} \Rightarrow \frac{\frac{1}{\sin{\alpha}}}{4}=\frac{2}{\frac{1}{\sin{\alpha}}} \Rightarrow \frac{1}{\sin{\alpha}}=\sqrt{8}=|OE|=|OC_{1}| \Rightarrow R=|OE|+|EK|=\sqrt{8}+1\approx 3.828

Guy Fox
Mar 23, 2018

Maybe I solved it correctly through luck. I just put another circle on top of the existing circles and thought they formed a square. I calculatet the diagonal which is 8 \sqrt{8} and than added the +1 as radius of smaller circle. I later realized it wasnt a square, but surprisingly the answer was correct

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...