5 second challenge

Algebra Level pending

A = [ 123 x 789 ] B = [ 101 112 131 415 161 718 192 21 222 ] C = [ 324 252 627 ] I f A B C = [ 0 ] , f i n d x . A=\begin{bmatrix} 123 & x & 789 \end{bmatrix}\\ \\ B=\begin{bmatrix} 101 & 112 & 131 \\ 415 & 161 & 718 \\ 192 & 21 & 222 \end{bmatrix}\\ \\ C=\begin{bmatrix} 324 \\ 252 \\ 627 \end{bmatrix}\\ \\ If\quad ABC=[0],\quad find\quad \left\lfloor x \right\rfloor .

456 -289 0 289

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

O n e x p a n d i n g A B C w e g e t a n e q u a t i o n o f t h e f o r m a x + b = 0 , w h e r e a a n d b a r e p o s i t i v e n u m b e r s . T h i s i m p l i e s x = ( b a ) . T h e r e f o r e x i s a n e g a t i v e n u m b e r . T h e o n l y n e g a t i v e c h o i c e i s 289. S o l v i n g t h e a c t u a l e q u a t i o n y i e l d s t h e r e s u l t x = 288.9888. x = 288.9888 = 289. On\quad expanding\quad ABC\quad we\quad get\quad an\quad equation\quad of\quad the\quad form\quad ax+b=0,\\ where\quad a\quad and\quad b\quad are\quad positive\quad numbers.\quad This\quad implies\quad x=-(\frac { b }{ a } ).\\ Therefore\quad x\quad is\quad a\quad negative\quad number.\quad The\quad only\quad negative\quad choice\quad is\\ -289.\quad Solving\quad the\quad actual\quad equation\quad yields\quad the\quad result\quad x=-288.9888.\\ \left\lfloor x \right\rfloor =\left\lfloor -288.9888 \right\rfloor =-289.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...