5 Short of 400 Followers

Calculus Level 4

λ = 0 1 d x 1 + x 3 p = lim n [ r = 1 n ( n 3 + r 3 ) n 3 n ] 1 n \begin{aligned} \lambda&=\int_{0}^{1}\frac{dx}{1+x^{3}} \\ p&=\lim_{n\to \infty} \left[{\frac{\prod_{r=1}^{n}(n^{3}+r^{3})}{n^{3n}}}\right] ^{\frac{1}{n}}\end{aligned} If λ \lambda and p p are given as above, find ln ( p ) \ln(p) in terms of λ \lambda .

ln ( 4 ) 3 + 3 λ \ln(4)-3+3\lambda ln ( 2 ) 3 + 3 λ \ln(2)-3+3\lambda 2 ln ( 2 ) λ 2\ln(2)-\lambda ln ( 4 ) 1 + 3 λ \ln(4)-1+3\lambda

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jun 6, 2016

p = lim n [ r = 1 n ( n 3 + r 3 ) ( n 3 ) n ] 1 n = lim n [ r = 1 n ( 1 + r 3 n 3 ) ] 1 n \small{p=\displaystyle\lim_{n\to \infty} \left[{\dfrac{\displaystyle\prod_{r=1}^{n}(n^{3}+r^{3})}{(n^{3})^{\large ^n}}}\right] ^{\frac{1}{n}}= \displaystyle\lim_{n\to \infty} \left[\displaystyle\prod_{r=1}^{n}\left(1+\dfrac{r^{3}}{n^3}\right)\right] ^{\frac{1}{n}}}

ln p = lim n 1 n [ r = 1 n ( 1 + r 3 n 3 ) ] \ln p= \displaystyle\lim_{n\to \infty} \dfrac 1n \left[\displaystyle\sum_{r=1}^{n}\left(1+\dfrac{r^{3}}{n^3}\right)\right]

By Reimann Sums , this is:

0 1 ln ( 1 + x 3 ) d x \large \displaystyle\int_0^1\ln(1+x^3)\mathrm{d}x

Use IBP :

= [ x ln ( 1 + x 3 ) ] 0 1 3 0 1 x 3 1 + x 3 1 1 1 + x 3 d x =\left[x\ln(1+x^3)\right]_0^1-3\displaystyle\int_0^1\underbrace{\dfrac{x^3}{1+x^3}}_{1-\frac{1}{1+x^3}}\mathrm{d}x

= ln 2 3 ( 1 λ ) \large =\ln2-3(1-\lambda) = ln 2 3 + 3 λ \Large =\boxed{\ln2-3+3\lambda}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...