80
100
125
75
50

**
This section requires Javascript.
**

You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.

Let initial momentum be $p_0$ , final momentum be $p_1$ , mass be $m$ , initial velocity be $u$ , final velocity be $v$ , initial kinetic energy be $KE_0$ and final kinetic energy be $KE_1$ .

$p_0 = mu$

$p_1 = m v = 1.5 p_0 = 1.5 mu$

$\implies m v=1.5 m u$

$\implies v=1.5 u$

$KE_0 = \dfrac{1}{2} m u^2 = 0.5 m u^2$

$KE_1 = \dfrac{1}{2} m v^2 = \dfrac{1}{2} m (1.5u)^2 = \dfrac{1}{2} m \times2.25 u^2 = 1.125 m u^2$

Increase in $KE = \dfrac{KE_1 - KE_0}{KE_1} \times 100\%$

$\implies$ Increase in $KE = \dfrac{1.125 m u^2 -0.5 m u^2}{0.5 m u^2} \times 100\%=\dfrac{0.625 m u^2}{0.5 m u^2} \times 100\%=\dfrac{1.25 m u^2}{ m u^2} \times 100\%$

$\implies$ Increase in $KE = 1.25 \times 100\% = \textcolor{#3D99F6}{\boxed{125\%}}$