50 Followers Problem

If the sum of the terms n, 2n , 3n , of an AP are S 1 { S }_{ 1 } , S 2 { S }_{ 2 } and S 3 { S }_{ 3 } then S 3 ( S 2 S 1 ) \frac { { S }_{ 3 } }{ { (S }_{ 2 }-{ S }_{ 1 })\quad \quad } is

0 3 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kalpok Guha
Dec 18, 2014

Let the first term=a,Common difference=d S 1 = 1 2 n ( 2 a + ( n 1 ) d ) . S_1 = \frac{1}{2}n(2a+(n-1)d). S 2 = 1 2 2 n ( 2 a + ( 2 n 1 ) d ) . S_2 = \frac{1}{2}2n(2a+(2n-1)d). S 3 = 1 2 3 n ( 2 a + ( 3 n 1 ) d ) . S_3 = \frac{1}{2}3n(2a+(3n-1)d). Now S 2 S 1 = 1 2 3 n ( 2 a + ( 3 n 1 ) d ) . 1 2 2 n ( 2 a + ( 2 n 1 ) d ) . { S }_2 - { S }_1 =\frac{1}{2}3n(2a+(3n-1)d). - \frac{1}{2}2n(2a+(2n-1)d). By manipulating the expression we get S 2 S 1 = n [ a + 1 2 d ( 3 n 1 ) ] . { S }_2 - { S }_1 =n[a+\frac{1}{2}d(3n-1)]. We can write this as 1 2 n [ 2 a + d ( 3 n 1 ) ] . \frac{1}{2}n[2a+d(3n-1)]. S 3 ( S 2 S 1 ) = 3 \frac { { S }_{ 3 } }{ { (S }_{ 2 }-{ S }_{ 1 })\quad \quad }=3

Chew-Seong Cheong
Dec 20, 2014

Let the first term and the common difference of the AP be a a and d d respectively. Then we have:

S 3 S 2 S 1 = 3 n [ 2 a + ( 3 n 1 ) d ] 2 2 n [ 2 a + ( 2 n 1 ) d ] 2 n [ 2 a + ( n 1 ) d ] 2 \dfrac {S_3} {S_2-S_1} = \dfrac {\dfrac {3n[2a+(3n-1)d]} {2} } { \dfrac {2n[2a+(2n-1)d]} {2} - \dfrac {n[2a+(n-1)d]} {2}}

= 3 n [ 2 a + ( 3 n 1 ) d ] 2 n [ 2 a + ( 2 n 1 ) d ] n [ 2 a + ( n 1 ) d ] \quad \quad \quad \quad = \dfrac {3n[2a+(3n-1)d] } { 2n[2a+(2n-1)d] - n[2a+(n-1)d]}

= 3 n [ 2 a + ( 3 n 1 ) d ] n [ 4 a + 2 ( 2 n 1 ) d 2 a ( n 1 ) d ] \quad \quad \quad \quad = \dfrac {3n[2a+(3n-1)d ]} {n[4a+2(2n-1)d - 2a-(n-1)d]}

= 3 n [ 2 a + ( 3 n 1 ) d ] n [ 2 a + ( 4 n 2 n + 1 ) d ] = 3 n [ 2 a + ( 3 n 1 ) d ] n [ 2 a + ( 3 n 1 ) d ] = 3 \quad \quad \quad \quad = \dfrac {3n[2a+(3n-1)d ]} {n[2a+(4n-2- n+1)d]} = \dfrac {3n[2a+(3n-1)d ]} {n[2a+(3n-1)d]} = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...