50 followers wth 50 days streak

Algebra Level 4

k = 0 n \displaystyle \sum_{k=0}^n ( k 2 k^2 + k + 1 ) k! = 2007 2007 ! 2007 \cdot 2007!
Find n .


The answer is 2006.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Maggie Miller
Aug 6, 2015

k = 0 n ( k 2 + k + 1 ) k ! = k = 0 n ( ( k + 1 ) 2 k ) k ! = k = 0 n ( ( k + 1 ) ( k + 1 ) ! k k ! ) \displaystyle\sum_{k=0}^n(k^2+k+1)k!=\sum_{k=0}^n((k+1)^2-k)k!=\sum_{k=0}^n\left((k+1)\cdot (k+1)!-k\cdot k!\right) .

This is a telescoping series, so k = 0 n ( k 2 + k + 1 ) k ! = ( n + 1 ) ( n + 1 ) ! 0 0 ! = ( n + 1 ) ( n + 1 ) ! \displaystyle\sum_{k=0}^n(k^2+k+1)k!=(n+1)\cdot(n+1)!-0\cdot0!=(n+1)\cdot (n+1)! . Therefore, ( n + 1 ) ( n + 1 ) ! = 2007 2007 ! (n+1)\cdot(n+1)!=2007\cdot2007! , so n = 2006 n=\boxed{2006} .

You are awsome Maggie .
Thnx for posting a solution.

Akhil Bansal - 5 years, 10 months ago

I am not getting what is telescoping series please help me .

prateek anand - 5 years, 10 months ago

Log in to reply

In a telescoping series, successive terms cancel.

k = 0 n ( ( k + 1 ) ( k + 1 ) ! k k ! ) \displaystyle\sum_{k=0}^n((k+1)\cdot(k+1)!-k\cdot k!)

= ( 1 1 ! 0 0 ! ) + ( 2 2 ! 1 1 ! ) + ( 3 ! 3 ! 2 2 ! ) + =(1\cdot 1!-0\cdot 0!)+(2\cdot 2!-1\cdot 1!)+(3!\cdot3!-2\cdot2!)+\cdots

+ ( n n ! ( n 1 ) ( n 1 ) ! ) + ( ( n + 1 ) ( n + 1 ) ! n n ! ) +(n\cdot n!-(n-1)\cdot(n-1)!)+((n+1)\cdot(n+1)!-n\cdot n!)

Now rearrange the terms to put like factorials together:

0 0 ! + ( 1 1 ! 1 1 ! ) + ( 2 2 ! 2 2 ! ) + -0\cdot 0!+(1\cdot 1!-1\cdot 1!)+(2\cdot 2!-2\cdot 2!)+\cdots

+ ( n n ! n n ! ) + ( n + 1 ) ( n + 1 ) ! +(n\cdot n!-n\cdot n!)+(n+1)\cdot(n+1)!

And all the middle terms cancel out, leaving 0 0 ! + ( n + 1 ) ( n + 1 ) ! -0\cdot 0!+(n+1)\cdot(n+1)! .

Maggie Miller - 5 years, 10 months ago

Log in to reply

I salute you thanks for guiding me

prateek anand - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...