500

Algebra Level 2

500 + 500 + 500 + . . . c a n b e e x p r e s s e d i n t h e f o r m a + b c w h e r e a + b c i s i r r e d u c i b l e . W h a t i s t h e v a l u e o f a + b c ? \sqrt { 500+\sqrt { 500+\sqrt { 500+... } } } \quad can\quad be\quad expressed\quad \\ in\quad the\quad form\quad \frac { a+\sqrt { b } }{ c } \quad where\quad \frac { a+\sqrt { b } }{ c } \quad is\quad \\ irreducible.\quad What\quad is\quad the\quad value\quad of\\ a+b-c?


The answer is 2000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Justin Tuazon
Dec 6, 2014

L e t x = 500 + 500 + 500 + . . . x 2 = 500 + 500 + 500 + . . . x 2 = 500 + x x 2 x 500 = 0 ( x 1 2 ) 2 1 4 2000 4 = 0 x = 1 ± 2001 2 x = 1 + 2001 2 ( x > 0 ) 1 + 2001 2 i s i r r e d u c i b l e a n d i s i n t h e f o r m a + b c . a = 1 , b = 2001 , c = 2 a + b c = 1 + 2001 2 = 2000 Let\quad x=\sqrt { 500+\sqrt { 500+\sqrt { 500+... } } } \\ \\ { x }^{ 2 }=500+\sqrt { 500+\sqrt { 500+... } } \\ { x }^{ 2 }=500+x\\ { x }^{ 2 }-x-500=0\\ { (x-\frac { 1 }{ 2 } ) }^{ 2 }-\frac { 1 }{ 4 } -\frac { 2000 }{ 4 } =0\\ x=\frac { 1\pm \sqrt { 2001 } }{ 2 } \\ x=\frac { 1+\sqrt { 2001 } }{ 2 } \quad (x>0)\\ \\ \frac { 1+\sqrt { 2001 } }{ 2 } \quad is\quad irreducible\quad and\quad is\quad in\quad the\quad form\\ \frac { a+\sqrt { b } }{ c } .\\ \\ a=1,\quad b=2001,\quad c=2\\ \\ \therefore \boxed { a+b-c=1+2001-2=2000 }

x = n + n + n + . . . x=\sqrt{n+\sqrt{n+\sqrt{n+...}}} x = n + x x=\sqrt{n+x} Here, you get the quadratic equation: x 2 x n x^{2}-x-n By the quadratic formula, we generate the equation x = 1 + 1 + 4 n 2 x=\dfrac{1+\sqrt{1+4n}}{2} Substitue n = 500 n=500 to get 1 + 2001 2 1 + 2001 2 = 2000 \implies \dfrac{1+\sqrt{2001}}{2} \implies 1+2001-2=\boxed{2000}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...