This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice! I did everything in a slightly different order, but same concept!
Log in to reply
Log in to reply
Easiest way is put θ = 4 5 .
I did this and then : (sen/cos)^2/(1/ cos)^2 = sen^2
In this problem we use the identities: tan θ = cos θ sin θ ⟹ tan 2 θ = cos 2 θ sin 2 θ and sin 2 θ + cos 2 θ = 1
tan 2 θ + 1 tan 2 θ = cos 2 θ sin 2 θ + 1 cos 2 θ sin 2 θ = cos 2 θ sin 2 θ + cos 2 θ cos 2 θ sin 2 θ = cos 2 θ sin 2 θ × sin 2 θ + cos 2 θ cos 2 θ = 1 sin 2 θ = sin 2 θ
tan 2 θ + 1 tan 2 θ = 1 − sec 2 θ 1 = 1 − cos 2 θ = sin 2 θ
tan 2 ( θ ) + 1 tan 2 ( θ )
cos 2 ( θ ) sin 2 ( θ ) + 1 tan 2 ( θ )
cos 2 ( θ ) 1 − cos 2 ( θ ) + 1 tan 2 ( θ )
cos 2 ( θ ) 1 − cos 2 ( θ ) + cos 2 ( θ ) tan 2 ( θ )
cos 2 ( θ ) 1 tan 2 ( θ )
tan 2 ( θ ) cos 2 ( θ )
cos 2 ( θ ) sin 2 ( θ ) cos 2 ( θ )
sin 2 ( θ )
Since tan^2 θ +1 = sec^2 θ
so, tan^2 θ / (tan^2 θ +1) =tan^2 θ/sec^2 θ =sin^2 θ / cos^2θ /1/cos^2 θ = sin^2 θ
Problem Loading...
Note Loading...
Set Loading...
tan 2 θ + 1 tan 2 θ = cos 2 θ sin 2 θ + 1 cos 2 θ sin 2 θ = cos 2 θ sin 2 θ + cos 2 θ cos 2 θ sin 2 θ = sin 2 θ
sin 2 θ + cos 2 θ = 1