Their Difference Is Just One!

Geometry Level 2

tan 2 θ tan 2 θ + 1 = ? \large \dfrac { { \tan }^{ 2 }\theta }{ { \tan }^{ 2 }\theta+ 1 }= \, ?


Check out the set: 2016 Problems

tan θ \tan\theta sin 2 θ { \sin }^{ 2 }\theta sec 2 θ {\sec }^{ 2 }\theta 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Akshat Sharda
Mar 11, 2016

tan 2 θ tan 2 θ + 1 = sin 2 θ cos 2 θ sin 2 θ cos 2 θ + 1 = sin 2 θ cos 2 θ sin 2 θ + cos 2 θ cos 2 θ = sin 2 θ \frac{\tan^2 \theta}{\tan^2 \theta+1}=\frac{ \frac{\sin^2\theta}{\cos^2\theta} }{ \frac{\sin^2\theta}{\cos^2\theta} +1 }= \frac{ \frac{\sin^2\theta}{\cancel{\cos^2\theta}} }{\frac{\sin^2\theta+\cos^2\theta}{\cancel{\cos^2 \theta}}} = \sin^2\theta


sin 2 θ + cos 2 θ = 1 \sin^2\theta+\cos^2\theta=1

Nice! I did everything in a slightly different order, but same concept!

Colin Carmody - 5 years, 3 months ago

Log in to reply

Is this what you did?

tan 2 θ + 1 = sec 2 θ \tan^2\theta +1=\sec^2\theta

Akshat Sharda - 5 years, 3 months ago

Log in to reply

Easiest way is put θ = 45. \theta=45.

A Former Brilliant Member - 5 years, 3 months ago

I did this and then : (sen/cos)^2/(1/ cos)^2 = sen^2

Kevin Nigbur - 5 years, 3 months ago

In this problem we use the identities: tan θ = sin θ cos θ \tan \theta=\dfrac{\sin \theta}{\cos \theta} \implies tan 2 θ = sin 2 θ cos 2 θ \boxed{\tan^2 \theta=\dfrac{\sin^2 \theta}{\cos^2 \theta}} and sin 2 θ + cos 2 θ = 1 \boxed{\sin^2 \theta + \cos^2 \theta = 1}

tan 2 θ tan 2 θ + 1 = \dfrac{\tan^2 \theta}{\tan^2 \theta + 1}= sin 2 θ cos 2 θ sin 2 θ cos 2 θ + 1 = sin 2 θ cos 2 θ sin 2 θ + cos 2 θ cos 2 θ = sin 2 θ cos 2 θ × cos 2 θ sin 2 θ + cos 2 θ = sin 2 θ 1 = \large \dfrac{\frac{\sin^2 \theta}{\cos^2 \theta}}{\frac{\sin^2 \theta}{\cos^2\theta}+1}=\dfrac{\frac{\sin^2 \theta}{\cos^2 \theta}}{\frac{\sin^2 \theta + \cos^2 \theta}{\cos^2 \theta}}=\dfrac{\sin^2 \theta}{\cos^2 \theta} \times \dfrac{\cos^2 \theta}{\sin^2 \theta+\cos^2 \theta}=\dfrac{\sin^2 \theta}{1}= sin 2 θ \color{#D61F06}\large \boxed{\sin^2 \theta}

Sharky Kesa
Mar 13, 2016

tan 2 θ tan 2 θ + 1 = 1 1 sec 2 θ = 1 cos 2 θ = sin 2 θ \begin{aligned} \dfrac{\tan^2 \theta}{\tan^2 \theta + 1} &= 1 - \dfrac {1}{\sec^2 \theta}\\ &= 1- \cos^2 \theta\\ &= \sin^2 \theta \end{aligned}

Jack Rawlin
Mar 17, 2016

tan 2 ( θ ) tan 2 ( θ ) + 1 \frac{\tan^2(\theta)}{\tan^2(\theta) + 1}

tan 2 ( θ ) sin 2 ( θ ) cos 2 ( θ ) + 1 \frac{\tan^2(\theta)}{\frac{\sin^2(\theta)}{\cos^2(\theta)} + 1}

tan 2 ( θ ) 1 cos 2 ( θ ) cos 2 ( θ ) + 1 \frac{\tan^2(\theta)}{\frac{1 - \cos^2(\theta)}{\cos^2(\theta)} + 1}

tan 2 ( θ ) 1 cos 2 ( θ ) + cos 2 ( θ ) cos 2 ( θ ) \frac{\tan^2(\theta)}{\frac{1 - \cos^2(\theta) + \cos^2(\theta)}{\cos^2(\theta)}}

tan 2 ( θ ) 1 cos 2 ( θ ) \frac{\tan^2(\theta)}{\frac{1}{\cos^2(\theta)}}

tan 2 ( θ ) cos 2 ( θ ) \tan^2(\theta)\cos^2(\theta)

sin 2 ( θ ) cos 2 ( θ ) cos 2 ( θ ) \frac{\sin^2(\theta)}{\cos^2(\theta)}\cos^2(\theta)

sin 2 ( θ ) \large \boxed{\sin^2(\theta)}

Shivansh Goel
Mar 18, 2016

Since tan^2 θ +1 = sec^2 θ

so, tan^2 θ / (tan^2 θ +1) =tan^2 θ/sec^2 θ =sin^2 θ / cos^2θ /1/cos^2 θ = sin^2 θ

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...