5 1234 5^{1234} is not too large

What is 5 1234 m o d 9 5^{1234} \bmod{9} ?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Since { ( a b ) m o d c = ( ( ( a m o d c ) ( b m o d c ) ) m o d c ) } \left\{\big(a*b\big) \bmod c =\Big(\Big(\big(a \bmod c\big)*\big(b \bmod c\big)\Big) \bmod c\Big)\right\}

And 5 6 m o d 9 = 1 {5^6} \bmod 9 = 1 so, for any positive integer k k , 5 6 k m o d 9 = 1 {5^{6k}} \bmod 9 = 1 ,

because

( 5 6 5 6 . . . 5 6 ) m o d 9 = ( ( 5 6 m o d 9 ) ( 5 6 m o d 9 ) . . . ( 5 6 m o d 9 ) ) m o d 9 = ( 1 1 . . . 1 ) m o d 9 = 1 {\Big(5^6*5^6*...*5^6\Big)} \bmod 9=\Big(\big(5^6 \bmod 9\big) * \big(5^6 \bmod 9 \big)* ... * \big(5^6 \bmod 9\big)\Big) \bmod 9 = \big(1*1*...*1\big) \bmod 9 = 1 .

5 1230 = 5 6 205 5^{1230}=5^{6*205} , so , 5 1230 m o d 9 = 1 5^{1230} \bmod 9 =1

5 1234 m o d 9 = ( ( 5 1230 m o d 9 ) ( 5 2 m o d 9 ) ( 5 2 m o d 9 ) ) m o d 9 = ( 1 7 7 ) m o d 9 = 49 m o d 9 = 4 {5^{1234}} \bmod 9 = \Big(\big(5^{1230} \bmod 9\big) * \big(5^2 \bmod 9 \big)* \big(5^2 \bmod 9\big)\Big) \bmod 9 = \big(1*7*7\big) \bmod 9 = 49 \bmod 9 = 4

Jordan Cahn
Dec 19, 2018

Relevant wiki: Euler's Theorem

Since 5 5 and 9 9 are relatively prime, by Euler's theorem 5 1234 m o d 9 5 1234 m o d ϕ ( 9 ) m o d 9 5 1234 m o d 6 m o d 9 ϕ ( 9 ) = 6 5 4 m o d 9 1236 0 m o d 6 , so 1234 4 m o d 6 625 m o d 9 4 m o d 9 6 + 2 + 5 = 13 and 1 + 3 = 4 \begin{aligned} 5^{1234} \bmod 9 &\equiv 5^{1234\, \bmod\, \phi(9)} &\mod 9 \\ &\equiv 5^{1234\, \bmod \, 6} &\mod 9 &&& \color{#3D99F6} \phi(9)=6 \\ &\equiv 5^4 & \mod 9 &&& \color{#3D99F6} 1236 \equiv 0\bmod 6 \text{, so } 1234 \equiv 4\bmod 6 \\ &\equiv 625 & \mod 9 \\ &\equiv \boxed{4} & \mod 9 &&& \color{#3D99F6} 6+2+5 = 13 \text{ and } 1 + 3 = 4 \end{aligned}

Kobe Mercado
Dec 18, 2018

By Euler's Theorem, a ϕ ( n ) a^{\phi(n)} \equiv 1 mod n a , n N \forall a, n \in N such that gcd ( a , n ) = 1 (a, n) = 1 .

Since 9 = 3 2 ϕ ( 9 ) = 9 ( 1 1 3 ) = 9 ( 2 3 9 = 3^2 \Rightarrow \phi(9) = 9(1 - \frac{1}{3}) = 9(\frac{2}{3} ) = 6 by definition of Euler's Totient Function.

\therefore 5 6 k 5^{6k} \equiv 1 mod 9 \forall integers k 1 k \geq 1 .

Since 1234 1234 \equiv 4 mod 9 5 1234 5 4 \Rightarrow 5^{1234} \equiv 5^4 mod 9 625 \equiv 625 mod 9.

5 1234 4 \therefore 5^{1234} \equiv 4 mod 9 \Rightarrow the remainder is 4 \boxed{4} .

Chew-Seong Cheong
Dec 19, 2018

Relevant wiki: Euler's Theorem

5 1234 5 1234 m o d ϕ ( 9 ) (mod 9) Since gcd ( 5 , 9 ) = 1 , Euler’s theorem applies. 5 1234 m o d 6 (mod 9) Euler’s totient function ϕ ( 9 ) = 9 × 2 3 = 6 5 4 (mod 9) 25 × 25 (mod 9) 7 × 7 (mod 9) 49 4 (mod 9) \begin{aligned} 5^{1234} & \equiv 5^{\color{#3D99F6}1234 \bmod \phi (9)} \text{ (mod 9)} & \small \color{#3D99F6} \text{Since }\gcd(5,9) = 1 \text{, Euler's theorem applies.} \\ & \equiv 5^{\color{#3D99F6}1234 \bmod 6} \text{ (mod 9)} & \small \color{#3D99F6} \text{Euler's totient function }\phi (9) = 9 \times \frac 23 = 6 \\ & \equiv 5^4 \text{ (mod 9)} \\ & \equiv 25 \times 25 \text{ (mod 9)} \\ & \equiv 7 \times 7 \text{ (mod 9)} \\ & \equiv 49 \equiv \boxed 4 \text{ (mod 9)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...