51st Problem 2016

Geometry Level 2

sin 2 θ 1 sin θ + sin 2 θ 1 + sin θ = ? \large \dfrac { \sin ^{ 2 }{ \theta } }{ 1-\sin { \theta } } +\dfrac { \sin ^{ 2 }{ \theta } }{ 1+\sin { \theta } } =?


Check out the set: 2016 Problems

2 tan 2 θ 2{ \tan }^{ 2 }\theta 2 tan θ 2{ \tan }\theta tan 2 θ { \tan }^{ 2 }\theta 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sravanth C.
Mar 12, 2016

Given = sin 2 θ 1 sin θ + sin 2 θ 1 + sin θ = sin 2 θ ( 1 + sin θ ) + sin 2 θ ( 1 sin θ ) ( 1 sin θ ) ( 1 + sin θ ) = sin 2 θ + sin 3 θ + sin 2 θ sin 3 θ ( 1 sin 2 θ ) = 2 sin 2 θ cos 2 θ = 2 tan 2 θ \large\begin{aligned} \text{Given} &= \dfrac{\sin ^2\theta}{1-\sin\theta}+\dfrac{\sin ^2\theta}{1+\sin\theta} \\ &=\dfrac{\sin ^2\theta(1+\sin\theta)+\sin ^2\theta(1-\sin\theta)}{(1-\sin\theta)(1+\sin\theta)}\\ &=\dfrac{\sin^2\theta +\sin^3\theta +\sin^2\theta -\sin^3\theta}{(1-\sin^2\theta)}\\ &=\dfrac{2\sin^2\theta}{\cos^2\theta}\\ &=\boxed{2\tan^2\theta} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...