∫ 0 π ( 1 + cos x ) 2 sin 4 x ( 1 − cos x ) d x = C A B
where A , C are co prime integers and B is square free
Find A + B + C
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I would prefer not to use Tangent half angle substitution unless it's a last resort because the working can get really really tedious.
What I've done is to use the identities: 1 + cos ( x ) = 2 cos 2 ( 2 x ) , 1 − cos ( x ) = 2 sin 2 ( 2 x ) and sin 4 ( x ) = ( 1 − cos 2 ( x ) ) 2 = ( 1 − ( 2 cos 2 ( 2 x ) − 1 ) 2 ) 2 . Then y = cos ( 2 x ) .
Log in to reply
Thanks. You are right. I failed to see that.
I also did the same...
Rewriting sinx^4 as (1-cosx)^2(1+cosx)^2 you come to the integral of (1-cosx)^5/2 from 0 to pi that gives the result
Problem Loading...
Note Loading...
Set Loading...
∫ 0 π ( 1 + cos x ) 2 sin 4 x 1 − cos x d x = ∫ 0 ∞ ( 1 + 1 + t 2 1 − t 2 ) 2 ( 1 + t 2 2 t ) 4 1 − 1 + t 2 1 − t 2 ˙ 1 + t 2 2 d t Let t = tan ( 2 x ) ⇒ d x = 1 + t 2 2 d t = ∫ 0 ∞ ( 1 + t 2 2 ) 2 ( 1 + t 2 2 t ) 4 1 + t 2 2 t 2 ˙ 1 + t 2 2 d t = ∫ 0 ∞ ( 1 + t 2 ) 2 7 2 2 7 t 5 d t Let u 2 = 1 + t 2 ⇒ 2 u d u = 2 t d t ⇒ u d u = t d t = 8 2 ∫ 1 ∞ u 7 u ( u 2 − 1 ) 2 d u = 8 2 ∫ 1 ∞ u 7 u 5 − 2 u 3 + u d u = 8 2 ∫ 1 ∞ ( u − 2 − 2 u − 4 + u − 6 ) d u = 8 2 [ − u 1 + 3 u 3 2 − 5 u 5 1 ] 1 ∞ = 8 2 ( 1 − 3 2 + 5 1 ) = 1 5 6 4 2
⇒ A + B + C = 6 4 + 2 + 1 5 = 8 1
− − − − − − − − − − − − − − − − − − − − − − − −
Solution as suggested by Pi Han Goh
∫ 0 π ( 1 + cos x ) 2 sin 4 x 1 − cos x d x = ∫ 0 π ( 1 + 2 cos 2 2 x − 1 ) 2 2 4 sin 4 2 x cos 4 2 x 1 − 1 + 2 sin 2 2 x d x = ∫ 0 π 2 2 cos 4 2 x 2 4 2 sin 5 2 x cos 4 2 x d x = 4 2 ∫ 0 π sin 5 2 x d x Let u = 2 x ⇒ d x = 2 d u = 8 2 ∫ 0 2 π sin 5 u d u Let v = cos u ⇒ sin 2 = 1 − v 2 ⇒ d u = − sin u d v = 8 2 ∫ 0 1 ( 1 − v 2 ) 2 d v = 8 2 ∫ 0 1 ( 1 − 2 v 2 + v 4 ) d v = 8 2 [ v − 3 2 v 3 + 5 v 5 ] 0 1 = 8 2 ( 1 − 3 2 + 5 1 ) = 1 5 6 4 2
⇒ A + B + C = 6 4 + 2 + 1 5 = 8 1