550 Followers Problem

Calculus Level 4

0 π sin 4 x ( 1 cos x ) ( 1 + cos x ) 2 d x = A B C \large{\displaystyle \int^{\pi}_{0} \frac{\sin^4 x \sqrt{(1-\cos x)}}{(1+\cos x)^2} dx=\frac{A\sqrt{B}}{C}}

where A , C A,C are co prime integers and B B is square free

Find A + B + C A+B+C

Try my set


The answer is 81.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 15, 2015

0 π sin 4 x 1 cos x ( 1 + cos x ) 2 d x = 0 ( 2 t 1 + t 2 ) 4 1 1 t 2 1 + t 2 ( 1 + 1 t 2 1 + t 2 ) 2 ˙ 2 1 + t 2 d t Let t = tan ( x 2 ) d x = 2 1 + t 2 d t = 0 ( 2 t 1 + t 2 ) 4 2 t 2 1 + t 2 ( 2 1 + t 2 ) 2 ˙ 2 1 + t 2 d t = 0 2 7 2 t 5 ( 1 + t 2 ) 7 2 d t Let u 2 = 1 + t 2 2 u d u = 2 t d t u d u = t d t = 8 2 1 u ( u 2 1 ) 2 u 7 d u = 8 2 1 u 5 2 u 3 + u u 7 d u = 8 2 1 ( u 2 2 u 4 + u 6 ) d u = 8 2 [ 1 u + 2 3 u 3 1 5 u 5 ] 1 = 8 2 ( 1 2 3 + 1 5 ) = 64 2 15 \begin{aligned} \int_0^\pi \frac{\sin^4x \sqrt{1-\cos x}}{(1+\cos{x})^2} dx & = \int_0^\infty \frac{\left(\frac{2t}{1+t^2} \right) ^4 \sqrt{1-\frac{1-t^2}{1+t^2}}}{\left(1+\frac{1-t^2}{1+t^2}\right)^2}\dot{} \frac{2}{1+t^2} dt \quad \quad \small \color{#3D99F6} {\text{Let } t = \tan \left(\frac{x}{2}\right) \quad \Rightarrow dx = \frac{2}{1+t^2} dt} \\ & = \int_0^\infty \frac{\left(\frac{2t}{1+t^2} \right) ^4 \sqrt{\frac{2t^2}{1+t^2}}}{\left(\frac{2}{1+t^2}\right)^2}\dot{} \frac{2}{1+t^2} dt \\ & = \int_0^\infty \frac{2^{\frac{7}{2}}t^5}{(1+t^2)^{\frac{7}{2}}} dt \quad \quad \small \color{#3D99F6} {\text{Let } u^2 = 1+t^2 \quad \Rightarrow 2u \space du = 2t \space dt \quad \Rightarrow u \space du = t \space dt} \\ & = 8\sqrt{2} \int_1^\infty \frac{u(u^2-1)^2}{u^7} du \\ & = 8\sqrt{2} \int_1^\infty \frac{u^5-2u^3+u}{u^7} du \\ & = 8\sqrt{2} \int_1^\infty \left( u^{-2}-2u^{-4}+u^{-6} \right) du \\ & = 8\sqrt{2} \left[ - \frac{1}{u} + \frac{2}{3u^3} - \frac{1}{5u^5} \right]_1^\infty \\ & = 8\sqrt{2} \left( 1 - \frac{2}{3} + \frac{1}{5} \right) \\ & = \frac{64\sqrt{2}}{15} \end{aligned}

A + B + C = 64 + 2 + 15 = 81 \Rightarrow A+B+C = 64+2+15 = \boxed{81}

------------------------

Solution as suggested by Pi Han Goh

0 π sin 4 x 1 cos x ( 1 + cos x ) 2 d x = 0 π 2 4 sin 4 x 2 cos 4 x 2 1 1 + 2 sin 2 x 2 ( 1 + 2 cos 2 x 2 1 ) 2 d x = 0 π 2 4 2 sin 5 x 2 cos 4 x 2 2 2 cos 4 x 2 d x = 4 2 0 π sin 5 x 2 d x Let u = x 2 d x = 2 d u = 8 2 0 π 2 sin 5 u d u Let v = cos u sin 2 = 1 v 2 d u = sin u d v = 8 2 0 1 ( 1 v 2 ) 2 d v = 8 2 0 1 ( 1 2 v 2 + v 4 ) d v = 8 2 [ v 2 v 3 3 + v 5 5 ] 0 1 = 8 2 ( 1 2 3 + 1 5 ) = 64 2 15 \begin{aligned} \int_0^\pi \frac{\sin^4x \sqrt{1-\cos x}}{(1+\cos{x})^2} dx & = \int_0^\pi \frac{2^4\sin^4 \frac{x}{2} \cos^4\frac{x}{2}\sqrt{1-1+2\sin^2 \frac{x}{2}}}{\left(1+2\cos^2 \frac{x}{2}-1\right)^2} dx \\ & = \int_0^\pi \frac{2^4\sqrt{2} \sin^5 \frac{x}{2} \cos^4\frac{x}{2}}{2^2 \cos^4 \frac{x}{2}} dx \\ & = 4\sqrt{2} \int_0^\pi \sin^5 \frac{x}{2} \space dx \quad \quad \small \color{#3D99F6}{\text{Let } u = \frac{x}{2} \quad \Rightarrow dx = 2 du} \\ & = 8\sqrt{2} \int_0^\frac{\pi}{2} \sin^5 u \space du \quad \quad \small \color{#3D99F6}{\text{Let } v = \cos{u} \quad \Rightarrow \sin^2 = 1-v^2 \quad \Rightarrow du = -\sin u \space dv} \\ & = 8\sqrt{2} \int_0^1 \left(1-v^2\right)^2 \space dv \\ & = 8\sqrt{2} \int_0^1 \left(1- 2 v^2 + v^4 \right) \space dv \\ \\ & = 8\sqrt{2} \left[v - \frac{2v^3}{3} + \frac{v^5}{5} \right]_0^1 \\ & = 8\sqrt{2} \left( 1 - \frac{2}{3} + \frac{1}{5} \right) \\ & = \frac{64\sqrt{2}}{15} \end{aligned}

A + B + C = 64 + 2 + 15 = 81 \Rightarrow A+B+C = 64+2+15 = \boxed{81}

I would prefer not to use Tangent half angle substitution unless it's a last resort because the working can get really really tedious.

What I've done is to use the identities: 1 + cos ( x ) = 2 cos 2 ( x 2 ) 1 + \cos(x) = 2\cos^2\left(\frac x2\right) , 1 cos ( x ) = 2 sin 2 ( x 2 ) 1 - \cos(x) = 2\sin^2\left(\frac x2\right) and sin 4 ( x ) = ( 1 cos 2 ( x ) ) 2 = ( 1 ( 2 cos 2 ( x 2 ) 1 ) 2 ) 2 \sin^4(x) = (1-\cos^2(x))^2 = \left (1 - \left(2\cos^2\left(\frac x2\right) - 1\right)^2 \right)^2 . Then y = cos ( x 2 ) y = \cos\left(\frac x2\right) .

Pi Han Goh - 5 years, 9 months ago

Log in to reply

Thanks. You are right. I failed to see that.

Chew-Seong Cheong - 5 years, 9 months ago

I also did the same...

Aditya Kumar - 2 years, 4 months ago
Matteo De Zorzi
Oct 17, 2015

Rewriting sinx^4 as (1-cosx)^2(1+cosx)^2 you come to the integral of (1-cosx)^5/2 from 0 to pi that gives the result

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...