555 wkwkwk

3 7 n + 9 7 n x 37^{n}+97^{n}x Find the minimum value of x x with x x is positive integer, such that the expression above always divisible by 555 for positive integer n n .


The answer is 74.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Steven Yuan
Dec 20, 2017

By the Chinese Remainder Theorem, we require the expression to be divisible by each of 3, 5, and 37. Taking the expression modulo each of these gives the following:

3 7 n + 9 7 n x 0 ( m o d 37 ) 2 3 n x 0 ( m o d 37 ) 3 7 n + 9 7 n x 0 ( m o d 5 ) 2 n + 2 n x 0 ( m o d 5 ) 2 n ( 1 + x ) 0 ( m o d 5 ) 3 7 n + 9 7 n x 0 ( m o d 3 ) 1 + x 0 ( m o d 3 ) . \begin{aligned} 37^n + 97^nx &\equiv 0 \! \! \! \! \pmod{37} \\ 23^nx &\equiv 0 \! \! \! \! \pmod{37} \\ \\ 37^n + 97^nx &\equiv 0 \! \! \! \! \pmod{5} \\ 2^n + 2^nx &\equiv 0 \! \! \! \! \pmod{5} \\ 2^n(1 + x) &\equiv 0 \! \! \! \! \pmod{5} \\ \\ 37^n + 97^nx &\equiv 0 \! \! \! \! \pmod{3} \\ 1 + x &\equiv 0 \! \! \! \! \pmod{3}. \end{aligned}

For the first expression, we can divide both sides by 2 3 n 23^n and get x 0 ( m o d 37 ) , x \equiv 0 \! \pmod{37}, since any power of 23 will be relatively prime to 37. For the second expression, we can divide both sides by 2 n 2^n and get x + 1 0 ( m o d 5 ) , x + 1 \equiv 0 \! \pmod{5}, since a power of two cannot divide five. Therefore, we seek the smallest positive integer x x such that

x 0 ( m o d 37 ) x 1 ( m o d 5 ) x 1 ( m o d 3 ) . \begin{aligned} x &\equiv 0 \! \! \! \! \pmod{37} \\ x &\equiv -1 \! \! \! \! \pmod{5} \\ x &\equiv -1 \! \! \! \! \pmod{3}. \end{aligned}

Quick trial-and-error calculations with multiples of 37 yields x = 74 x = \boxed{74} as the desired number.

did the same way

I Gede Arya Raditya Parameswara - 3 years, 5 months ago

Yup, similar approach too.

Hans Gabriel Daduya - 3 years, 2 months ago
Mark Hennings
Dec 20, 2017

Since 103 103 and 555 555 are coprime and 97 × 103 1 ( m o d 555 ) 97 \times 103 \equiv 1 \pmod{555} , and since 37 × 103 481 ( m o d 555 ) 37 \times 103 \equiv 481 \pmod{555} , multiplying the original equation by 10 3 n 103^n means that we need to find the smallest positive integer x x such that 48 1 n + x 0 ( m o d 555 ) 481^n + x \equiv 0 \pmod{555} for all positive integers n n . Since 555 555 divides 481 × 480 481 \times 480 we deduce that 48 1 2 481 ( m o d 555 ) 481^2 \equiv 481 \pmod{555} , and hence 48 1 n 481 ( m o d 555 ) 481^n \equiv 481 \pmod{555} for all positive integers n n . Thus we simply need to find the smallest positive integer x x such that 481 + x 0 ( m o d 555 ) 481 + x \equiv 0 \pmod{555} , which is 74 \boxed{74} .

can you repost my problem pliss!

I Gede Arya Raditya Parameswara - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...