One More Step Of Simplication

Geometry Level 1

( cos θ + sin θ ) 2 + ( cos θ sin θ ) 2 = ? \large \left( \cos{ \theta +\sin { \theta } } \right) ^{ 2 }+\left( \cos{ \theta -\sin { \theta } } \right) ^{ 2 }=?


Check out the set: 2016 Problems

2 2 sin 2 θ + cos 2 θ \sin^{ 2 }\theta +\cos{ ^{ 2 }\theta } sin θ + cos θ \sin\theta +\cos{ \theta } cot 2 θ \cot^{ 2 }\theta

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chung Kevin
Mar 17, 2016

For simplicity sake, let A = cos θ A = \cos \theta and B = sin θ B= \sin\theta , then we want to find ( A + B ) 2 + ( A B ) 2 (A+B)^2 + (A-B)^2 .

Let's expand and simplify the expressions ( A + B ) 2 (A+B)^2 and ( A B ) 2 (A-B)^2 first.

( A + B ) 2 = A 2 + B 2 + 2 A B ( A B ) 2 = A 2 + B 2 2 A B (A+B)^2 = A^2 + B^2 + 2AB \\ (A-B)^2 = A^2+B^2-2AB

Thus,

( A + B ) 2 + ( A B ) 2 = ( A 2 + B 2 + 2 A B ) + ( A 2 + B 2 2 A B ) = ( A 2 + B 2 + 2 A B ) + ( A 2 + B 2 2 A B ) = 2 ( A 2 + B 2 ) \begin{aligned} (A+B)^2 + (A-B)^2 &=& (A^2+B^2 + 2AB) + (A^2 + B^2-2AB) \\ &=& (A^2+B^2 + \cancel{2AB}) + (A^2 + B^2-\cancel{2AB}) \\ &=& 2(A^2+B^2) \end{aligned}

Subsituting back A = cos θ A = \cos \theta and B = sin θ B= \sin\theta gives 2 ( A 2 + B 2 ) = 2 ( cos 2 θ + sin 2 θ ) 2(A^2+B^2) = 2(\cos^2 \theta + \sin^2\theta ) .

By Pythagorean identities , we have cos 2 θ + sin 2 θ = 1 \cos^2 \theta + \sin^2\theta = 1 .

Hence our answer is 2 ( 1 ) = 2 2(1) =\boxed2 .

Great solution! However, the minus between the parantheses should be a plus (after "thus"). Keep it up!

Nicolai Kofoed - 5 years, 2 months ago

Log in to reply

Thank you. I've fixed it.

Chung Kevin - 5 years, 2 months ago

Nice solution #dun wid sam aprch

Atanu Ghosh - 5 years, 2 months ago

Using the FOIL method for these given ( cos ( θ ) + sin ( θ ) ) 2 + ( cos ( θ ) sin ( θ ) ) 2 (\cos (\theta) + \sin(\theta))^2 +(\cos(\theta) -\sin (\theta))^2

So

( cos ( θ ) + sin ( θ ) ) 2 + ( cos ( θ ) sin ( θ ) ) 2 = [ cos 2 ( θ ) + 2 cos ( θ ) sin ( θ ) + sin ( θ ) ] + [ cos 2 ( θ ) 2 cos ( θ ) sin ( θ ) + sin 2 ( θ ) ] I use brackets to avoid confusion = 2 cos 2 ( θ ) + 2 sin 2 ( θ ) Factor out = 2 ( sin 2 ( θ ) + cos 2 ( θ ) ) The Pythagorean identity cos 2 ( θ ) + sin 2 ( θ ) = 1 = 2 1 = 2 \displaystyle{\begin{aligned}(\cos(\theta) + \sin(\theta))^2 +(\cos(\theta)-\sin (\theta))^2 &=[\cos^2(\theta) +2 \cos(\theta)\sin(\theta) + \sin(\theta)] +[\cos^2(\theta) - 2\cos(\theta) \sin(\theta) +\sin^2(\theta)] \quad\quad\quad\quad\quad\quad\quad\quad{\text{I use brackets to avoid confusion}} \\&= 2\cos^2(\theta) +2\sin^2(\theta)\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad{\text{Factor out}} \\&=2(\sin^2(\theta)+\cos^2(\theta)) \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad{\textrm{The Pythagorean identity } \cos^2(\theta)+\sin^2(\theta) = 1 }\\&= 2 \cdot 1 \\&=2 \end{aligned}}

ADIOS!!! \large \text{ADIOS!!!}

Thank you for your solution!

Chung Kevin - 5 years, 2 months ago

Log in to reply

Your welcome @Chung Kevin . 'Research is my passion'

A Former Brilliant Member - 5 years, 2 months ago

Please use the LaTeX code \quad rarely, instead use the LaTeX code \text the square does not show in some devices(like mine XD)

Ashish Menon - 5 years ago
Viki Zeta
Jun 1, 2016

Acc to identity, ( a + b ) 2 + ( a b ) 2 = 2 ( a 2 + b 2 ) (a+b)^{2} + (a-b)^{2} = 2(a^{2} + b^{2})

And c o s 2 θ + s i n 2 θ = 1 cos^{2} \theta + sin^{2} \theta = 1

Therefore,

( c o s θ + s i n θ ) 2 + ( c o s θ s i n θ ) 2 = 2 ( c o s 2 θ + s i n 2 θ ) = 2 ( 1 ) = 2 (cos \theta + sin \theta)^{2} + (cos \theta - sin \theta)^{2} = 2(cos^{2} \theta + sin^{2} \theta) = 2(1) = 2

There's a lack of L A T e X L_A^TeX

Log in to reply

Or LaTeX \LaTeX .

Ashish Menon - 5 years ago

Log in to reply

That's my own modification of the brand.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...