+ 2 H K I 0 O O 5 M 1 I N N 7 O 6 N G G
The above represents a cryptogram , each letter represents a distinct digit, and each leading digit is non-zero. Find the number of possible solutions to this cryptogram.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Right , but maybe you should be a little more explicit in some steps.
But cute problem anyway.
Hey, where can the results of the IMO be seen? Do you know? Thanks!
Log in to reply
Mark coordination is in progress right now :)
I suppose on the official IMO page and on the official Hong Kong imo page too.
You can search it with google suppose you'll find it easily but the results aren't published yet anyway.
Log in to reply
Oh, if the results aren't out yet, then that explains it. :)
Oh my, I am soooo close!!
What are the 48 solutions? Can you list them all plz
Log in to reply
the solutions in the form KHIMGNO are: 5284170, 6384170, 9684170, 6384270, 9684270, 5284370, 9684370, 6384570, 9684570, 5284670, 5284970, 6384970, 5284061, 5284361, 5284761, 5284961, 6384052, 9684052, 6384152, 9684152, 9684352, 6384752, 9684752, 6384952, 6384025, 9684025, 6384125, 9684125, 9684325, 6384725, 9684725, 6384925, 5284016, 5284316, 5284716, 5284916, 5284107, 6384107, 9684107, 6384207, 9684207, 5284307, 9684307, 6384507, 9684507, 5284607, 5284907, and 6384907
The solutions: 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 8 4 7 8 4 7 8 4 7 8 4 7 8 4 6 8 4 6 8 4 6 8 4 6 8 4 1 8 4 1 8 4 1 8 4 1 8 4 0 8 4 0 8 4 0 8 4 0 8 4 7 8 4 7 8 4 7 8 4 7 8 4 5 8 4 5 8 4 5 8 4 5 8 4 2 8 4 2 8 4 2 8 4 2 8 4 0 8 4 0 8 4 0 8 4 0 8 4 7 8 4 7 8 4 7 8 4 7 8 4 5 8 4 5 8 4 5 8 4 5 8 4 2 8 4 2 8 4 2 8 4 2 8 4 0 8 4 0 8 4 0 8 4 0 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 2 0 1 7 8 0 8 0 8 0 8 0 8 1 8 1 8 1 8 1 8 6 8 6 8 6 8 6 8 7 8 7 8 7 8 7 8 0 8 0 8 0 8 0 8 2 8 2 8 2 8 2 8 5 8 5 8 5 8 5 8 7 8 7 8 7 8 7 8 0 8 0 8 0 8 0 8 2 8 2 8 2 8 2 8 5 8 5 8 5 8 5 8 7 8 7 8 7 8 7 2 7 0 1 2 7 0 3 2 7 0 6 2 7 0 9 2 6 1 0 2 6 1 3 2 6 1 7 2 6 1 9 2 1 6 0 2 1 6 3 2 1 6 7 2 1 6 9 2 0 7 1 2 0 7 3 2 0 7 6 2 0 7 9 3 7 0 1 3 7 0 2 3 7 0 5 3 7 0 9 3 5 2 0 3 5 2 1 3 5 2 7 3 5 2 9 3 2 5 0 3 2 5 1 3 2 5 7 3 2 5 9 3 0 7 1 3 0 7 2 3 0 7 5 3 0 7 9 6 7 0 1 6 7 0 2 6 7 0 3 6 7 0 5 6 5 2 0 6 5 2 1 6 5 2 3 6 5 2 7 6 2 5 0 6 2 5 1 6 2 5 3 6 2 5 7 6 0 7 1 6 0 7 2 6 0 7 3 6 0 7 5 5 7 0 1 5 7 0 3 5 7 0 6 5 7 0 9 5 6 1 0 5 6 1 3 5 6 1 7 5 6 1 9 5 1 6 0 5 1 6 3 5 1 6 7 5 1 6 9 5 0 7 1 5 0 7 3 5 0 7 6 5 0 7 9 6 7 0 1 6 7 0 2 6 7 0 5 6 7 0 9 6 5 2 0 6 5 2 1 6 5 2 7 6 5 2 9 6 2 5 0 6 2 5 1 6 2 5 7 6 2 5 9 6 0 7 1 6 0 7 2 6 0 7 5 6 0 7 9 9 7 0 1 9 7 0 2 9 7 0 3 9 7 0 5 9 5 2 0 9 5 2 1 9 5 2 3 9 5 2 7 9 2 5 0 9 2 5 1 9 2 5 3 9 2 5 7 9 0 7 1 9 0 7 2 9 0 7 3 9 0 7 5
Problem Loading...
Note Loading...
Set Loading...
7 + O + 6 + N + G = G ⇒ O + N = 7 o r 1 7 5 + M + 1 + I + N + 2 o r 3 = N ⇒ 3 0 > 8 o r 9 + M + I > 2 0 I + 2 + O = O ⇒ I = 8 ⇒ O = 8 a n d N = 8 ⇒ O + N = 7 2 + H + 1 + K ⇒ H + 3 = K 5 + M + 1 + 8 + N + 2 = N ⇒ M = 4 G = a n y t h i n g e l s e
Given the above conditions, there are only 48 solutions that fit the equation.