58th Problem 2016

Geometry Level 1

sin θ sin θ cos 2 θ = ? \large \sin{ \theta - \sin{ \theta \cos{ ^{ 2 }\theta } } } = \, ?


Check out the set: 2016 Problems

1 sin 3 θ \sin ^{ 3 }{ \theta } 1 cos 2 θ \frac { 1 }{ \cos{ ^{ 2 }\theta } } 1 sin 2 θ \frac { 1 }{ \sin{ ^{ 2 }\theta } }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ralph James
Mar 12, 2016

sin θ sin θ cos 2 θ \sin \theta - \sin \theta \cos^{2} \theta

Extract the common factor, sin θ \sin \theta .

sin θ ( 1 cos 2 θ ) \sin \theta \cdot ( 1 - \cos^{2} \theta) .

Use the identity: sin 2 θ + cos 2 θ = 1 \sin^{2} \theta + \cos^{2} \theta = 1 . sin 2 θ + cos 2 θ = 1 1 cos 2 θ = sin 2 θ \sin^{2} \theta + \cos^{2} \theta = 1 \implies 1 - \cos^{2} \theta = \sin^{2} \theta .

Substituting: sin θ sin 2 θ = sin 3 θ \sin \theta \cdot \sin^{2} \theta = \boxed{\sin^{3} \theta} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...