600 followers problem!

Calculus Level 3

{ f ( 1729 ) = 4 f ( 1730 ) = 5 f ( 1731 ) = 6 \large \begin{cases} {f(1729) = 4} \\ {f(1730) = 5} \\ {f(1731)=6} \\ \end{cases}

Let f ( x ) f(x) be a cubic polynomial satisfying the following system of equations. Find 1729 1731 f ( x ) d x \displaystyle\int _{ 1729 }^{ 1731 }{ f(x)dx } .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Mar 19, 2016

It is easy to identify: f ( x ) = A ( x 1729 ) ( x 1730 ) ( x 1731 ) + x 1725 \large f(x)=A(x-1729)(x-1730)(x-1731)+x-1725 (See Polynomial Interpolation )

Hence, 1729 1731 f ( x ) d x = 1729 1731 ( A ( x 1729 ) ( x 1730 ) ( x 1731 ) + x 1725 ) d x Substituting x-1730=t such that dx=dt = 1 1 ( A ( t + 1 ) ( t ) ( t 1 ) + t + 5 ) d t = 1 1 ( A t 3 A t + t + 5 ) d t = 0 + 10 = 10 \large{\displaystyle\int _{ 1729 }^{ 1731 }f(x)dx \\ \begin{aligned}&=\displaystyle\int _{ 1729 }^{ 1731 }(A(x-1729)(x-1730)(x-1731)+x-1725)\,dx\\&\\&\\&\color{#D61F06}{\text{Substituting x-1730=t such that dx=dt}}\\& \\&=\int_{-1}^{1} (A(t+1)(t)(t-1)+t+5)\,dt\\&\\&= \int_{-1}^{1}(\color{#20A900}{At^3-At+t}+5)\,dt\\&\\\Large&=\color{#20A900}{0}+10\\&\\&=\huge\boxed{10}\end{aligned}}


1 1 ( A t 3 A t + t ) d t = 0 **\int_{-1}^{1} (\color{#20A900}{At^3-At+t})\,dt=0

since A t 3 A t + t \color{#20A900}{At^3-At+t} is a odd function by using- if f ( x ) f(x) is an odd function, then a a f ( x ) d x = 0. \displaystyle \int _{ -a }^{ a }{ f(x)dx }=0.

Swapnil Das
Mar 19, 2016

We can use Simpson's rule , which gives the exact value of the integral for polynomials of degree 3 \le 3 . Therefore,

1729 1731 f ( x ) d x = 1731 1729 6 [ f ( 1731 ) + 4 f ( 1731 + 1729 2 ) + f ( 1729 ) ] = 10 \displaystyle\int _{ 1729 }^{ 1731 }{ f(x)dx=\frac { 1731-1729 }{ 6 } \left[ f(1731)+4f\left( \frac { 1731+1729 }{ 2 } \right) +f(1729) \right] } =10

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...