Sines And Cosines Are Better

Geometry Level 2

tan 2 θ 1 tan 2 θ + 1 = ? \large \dfrac { \tan^2 \theta - 1 }{ \tan^2 \theta + 1 } = \, ?


Check out the set: 2016 Problems

cos 2 θ \cos ^{ 2 }{ \theta } 1 2 cos 2 θ 1 - 2\cos ^{ 2 }{ \theta } 1 -1 sin 2 θ \sin ^{ 2 }{ \theta }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Fuller
Mar 13, 2016

tan 2 θ 1 tan 2 θ + 1 \frac { \tan^2 \theta - 1 }{ \tan^2 \theta + 1 }

= tan 2 θ + 1 2 tan 2 θ + 1 = \frac { \tan^2 \theta + 1 - 2 }{ \tan^2 \theta + 1 }

= 1 2 tan 2 θ + 1 = 1 - \frac { 2 }{ \tan^2 \theta + 1 }

= 1 2 sec 2 θ = 1 - \frac { 2 }{ \sec^2 \theta }

= 1 2 cos 2 θ = \large \color{#20A900}{\boxed{1 - 2 \cos^2 \theta }}

tan 2 θ 1 tan 2 θ + 1 = s i n 2 θ c o s 2 θ cos 2 θ sin 2 θ + cos 2 θ cos 2 = sin 2 θ cos 2 θ = \frac{\tan^2 \theta - 1}{\tan^2 \theta + 1} = \frac{\frac{sin^2 \theta - cos^2 \theta}{\cos^2 \theta}}{\frac{\sin^2 \theta + \cos^2 \theta}{\cos^2}} = \sin^2 \theta - \cos^2 \theta = = sin 2 θ + cos 2 θ cos 2 θ cos 2 θ = 1 2 cos 2 θ = \sin^2 \theta + \cos^2 \theta - \cos^2 \theta - \cos^2 \theta = 1 - 2\cos^2 \theta

In your last step, we could have instead written it as sin 2 θ cos 2 θ = cos ( 2 θ ) , \sin^2\theta - \cos^2 \theta = -\cos(2\theta),

which could be more useful, depending on the context where this expression comes up.

Eli Ross Staff - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...