Finding Both Minimum And Maximum

Algebra Level 5

{ x + y + z = 4 x 2 + y 2 + z 2 = 6 \large\begin{cases} x+y+z=4\\ x^2+y^2+z^2=6\end{cases}

If x , y x,y and z z are reals numbers that satisfy the system of equations above, find the sum of the maximum and the minimum value of A = x 6 + y 6 + z 6 A= x^6+y^6+z^6 .

Round your answer to the nearest integer.


This problem is part of the set: Max and min .


The answer is 109.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let a function f ( p ) = p 3 + A p 2 + B p + C f\left( p \right) \, =\, { p }^{ 3 }\, +\, A{ p }^{ 2 }\, +\, Bp\, +\, C have roots x x , y y , and z z .

By Vieta's Formulas , we know that

A = x + y + z = 4 A = 4 -A\, =\, x\, +\, y\, +\, z\, =\, 4\, \Rightarrow \, A\, =\, -4

and

( x + y + z ) 2 = 4 2 x 2 + y 2 + z 2 + 2 ( x y + x z + y z ) = 16 6 + 2 B = 16 B = 5 { \left( x\, +\, y\, +\, z \right) }^{ 2 }\, =\, { 4 }^{ 2 }\\ { x }^{ 2 }\, +\, { y }^{ 2 }\, +\, { z }^{ 2 }\, +\, 2\left( xy\, +\, xz\, +\, yz \right) \, =\, 16\\ 6\, +\, 2B\, =\, 16\, \Rightarrow \, B\, =\, 5

x 6 + y 6 + z 6 { x }^{ 6 }\, +\, { y }^{ 6 }\, +\, { z }^{ 6 } will have extrema when f ( p ) f\left( p \right) has a multiple root. This will occur when f ( p ) f\left( p \right) has a critical point with an ordinate of 0.

f ( p ) = 3 p 2 8 p + 5 = 0 p = 1 a n d 5 3 f^{ ' }\left( p \right) \, =\, 3{ p }^{ 2 }\, -\, 8p\, +\, 5\, =\, 0\\ p\, =\, 1\, and\, \frac { 5 }{ 3 }

Since those are double roots, the other roots must be 2 2 and 2 3 \frac { 2 }{ 3 } respectively.

m a x ( x 6 + y 6 + z 6 ) = 1 6 + 1 6 + 2 6 = 66 m i n ( x 6 + y 6 + z 6 ) = ( 5 3 ) 6 + ( 5 3 ) 6 + ( 2 3 ) 6 = 42 232 243 66 + 42 232 243 = 108 232 243 109 max\left( { x }^{ 6 }\, +\, { y }^{ 6 }\, +\, { z }^{ 6 } \right) \, =\, { 1 }^{ 6 }\, +\, { 1 }^{ 6 }\, +\, { 2 }^{ 6 }\, =\, 66\\ min\left( { x }^{ 6 }\, +\, { y }^{ 6 }\, +\, { z }^{ 6 } \right) \, =\, { \left( \frac { 5 }{ 3 } \right) }^{ 6 }\, +\, { \left( \frac { 5 }{ 3 } \right) }^{ 6 }\, +\, { \left( \frac { 2 }{ 3 } \right) }^{ 6 }\, =\, 42\frac { 232 }{ 243 } \\ 66\, +\, 42\frac { 232 }{ 243 } \, =\, \boxed { 108\frac { 232 }{ 243 } \, \approx \, 109 }

I found the last part a bit complicated...................can you explain it without the use of calculus.

Abhisek Mohanty - 5 years, 2 months ago

Log in to reply

I've posted a non-calculus approach.

Pi Han Goh - 5 years, 1 month ago
Pi Han Goh
Apr 24, 2016

Relevant wiki: Classical Inequalities - Problem Solving - Advanced

Because ( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 ( x y + x z + y z ) (x+y+z)^2 = x^2+y^2 + z^2 + 2(xy+xz+yz) , then x y + x z + y z = 5 xy+xz+yz = 5 .

Let f ( X ) f(X) be a monic cubic polynomial with roots x , y x,y and z z . Then, by Vieta's formula , f ( X ) = X 3 4 X + 5 X + D f(X) = X^3 - 4X + 5X + D , where D = x y z D =-xyz .

Since x , y x,y and z z are real numbers, then f ( X ) f(X) has all real roots, so its cubic discriminant is non-negative:

b 2 c 2 4 a c 3 4 b 3 d 27 a 2 d 2 + 18 a b c d 0 , b^2 c^2 - 4ac^3 - 4b^3 d - 27a^2 d^2 + 18abcd \geq 0 \; ,

where a = 1 , b = 4 , c = 5 , d = D a = 1, b = -4, c = 5, d = D . Substituting these values and solving this inequality yields 2 D 50 27 -2 \leq D \leq -\dfrac{50}{27} .

Let P n = x n + y n + z n P_n = x^n +y^n + z^n , then P 1 = 4 , P 2 = 6 P_1 = 4, P_2=6 and we want to find max ( P 6 ) + min ( P 6 ) \max(P_6) + \min(P_6) .

Using the algebraic identity, x 3 + y 3 + z 3 3 x y z = ( x + y + z ) ( x 2 + y 2 + z 2 x y x z y z ) x^3+y^3 + z^3 - 3xyz = (x+y+z)(x^2+y^2 + z^2 - xy -xz - yz) , we get P 3 = 3 D + 4 P_3 = -3D + 4 .

By Newton's sum , we have

P 4 4 P 3 + 5 P 2 + D P 1 = 0 P 4 = 16 D 14 P 5 4 P 4 + 5 P 3 + D P 2 = 0 P 5 = 55 D 76 P 6 4 P 5 + 5 P 4 + D P 3 = 0 P 6 = 3 ( D 2 48 D 78 ) = 3 ( ( D 24 ) 2 654 ) . \begin{aligned} && P_4 - 4P_3 + 5P_2 + DP_1 = 0 \Rightarrow P_4 = -16D - 14 \\ && P_5 - 4P_4 + 5P_3 + DP_2 = 0 \Rightarrow P_5 = -55D - 76 \\ && P_6 - 4P_5 + 5P_4 + DP_3 = 0 \Rightarrow P_6 = 3(D^2 - 48D - 78) = 3( (D-24)^2 -654 ) \; . \end{aligned}

Since g ( D ) = 3 ( ( D 24 ) 2 654 ) g(D) = 3( (D-24)^2 -654 ) is a strictly decreasing function in the interval 2 D 50 27 -2 \leq D \leq -\dfrac{50}{27} , then max ( P 6 ) = max ( g ( D ) ) = g ( 2 ) = 66 \max(P_6) = \max(g(D)) = g(-2) = 66 and min ( P 6 ) = min ( g ( D ) ) = g ( 50 27 ) = 42 232 243 \min(P_6) = \min(g(D)) = g\left( -\dfrac{50}{27} \right) =42 \dfrac{232}{243} .

Hence, our answer is 66 + 42 232 243 = 109 \left \lfloor 66 + 42 \dfrac{232}{243} \right \rceil = \boxed{109} .

To find the values of a , b a,b and c c when min/max is obtained, just substitute the value of D D into f ( X ) f(X) and solve f ( X ) = 0 f(X) = 0 by rational root theorem .

We should get
min ( A ) = 42 232 243 \min(A) = 42 \dfrac{232}{243} when the unordered solution for ( x , y , z ) (x,y,z) to be ( 2 3 , 5 3 , 5 3 ) \left(\dfrac23 ,\dfrac53,\dfrac53\right) ,
max ( A ) = 66 \max(A) = 66 when the unordered solution for ( x , y , z ) (x,y,z) to be ( 1 , 1 , 2 ) (1,1,2) .

Pi Han Goh - 5 years, 1 month ago

Alternatively, we can use calculus to find the range of D D .

With f ( X ) = X 3 4 X 2 + 5 X + D f(X) = X^3 - 4X^2 + 5X + D . Since f ( X ) f(X) has 3 real roots, then f ( X ) f(X) has two turning points. Let x 1 < x 2 x_1< x_2 denote the x x -coordinate of these turning points, then they satisfy f ( X ) = 3 X 2 8 X + 5 = 0 f'(X) = 3X^2 - 8X+5 = 0 . Solving this equation gives x 1 = 1 , x 2 = 5 3 x_1 = 1, x_2 = \dfrac53 .

Since f ( X ) f(X) has a positive leading coefficient, then f ( x 1 ) 0 f ( x 2 ) f(x_1) \geq 0 \geq f (x_2) , or equivalently:

f ( 1 ) 0 f ( 5 3 ) 2 + D 0 50 27 + D 2 D 50 27 . f(1) \geq 0 \geq f \left( \dfrac53\right) \Leftrightarrow 2 + D \geq 0 \geq \dfrac{50}{27}+ D \Rightarrow -2 \leq D \leq -\dfrac{50}{27} \; .

@Mark Hennings , I'm so happy right now!

Pi Han Goh - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...