6th grade problem

Algebra Level 2

1 + a + a 2 + a 3 + + a x = ( 1 + a ) ( 1 + a 2 ) ( 1 + a 4 ) ( 1 + a 8 ) x = ? \begin{aligned} \large 1 + a + a^2 + a^3 + \ldots + a^x &=& (1+a)(1+a^2)(1+a^4)(1+a^8) \\ \large x &=& \ ? \end{aligned}

Assume a 0 a \ne 0 .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Patrick Engelmann
Apr 28, 2015

1 + a + a 2 + a 3 + + a x = 1 a x + 1 1 a 1 + a^{} + a^{2} + a^{3} + \dots + a^{x} = \frac{1-a^{x+1}}{1-a}

1 a x + 1 1 a = ( 1 + a ) ( 1 + a 2 ) ( 1 + a 4 ) ( 1 + a 8 ) \Rightarrow \frac{1-a^{x+1}}{1-a} = (1+a)(1+a^{2})(1+a^{4})(1 + a^{8})

1 a x + 1 = ( 1 + a ) ( 1 a ) ( 1 + a 2 ) ( 1 + a 4 ) ( 1 + a 8 ) \Leftrightarrow 1-a^{x+1} =(1+a)(1-a)(1+a^{2})(1+a^{4})(1 + a^{8})

1 a x + 1 = ( 1 a 2 ) ( 1 + a 2 ) ( 1 + a 4 ) ( 1 + a 8 ) \Leftrightarrow 1-a^{x+1} =(1-a^{2})(1+a^{2})(1+a^{4})(1 + a^{8})

1 a x + 1 = ( 1 a 4 ) ( 1 + a 4 ) ( 1 + a 8 ) \Leftrightarrow 1-a^{x+1} =(1-a^{4})(1+a^{4})(1 + a^{8})

1 a x + 1 = ( 1 a 8 ) ( 1 + a 8 ) \Leftrightarrow 1-a^{x+1} =(1-a^{8})(1 + a^{8})

1 a x + 1 = 1 a 16 \Leftrightarrow 1-a^{x+1} = 1-a^{16}

x = 15 \Leftrightarrow x = \boxed{15}

Curtis Clement
Apr 19, 2015

You can expand both sides are cancel out like terms, but there is a shortcut... For the identity to always be true both sides must contain the same highest power which is: 8 + 4 + 2 + 1 = 15 8+4+2+1 = \boxed{15}

Moderator note:

Of course expanding and canceling out like terms works. There's a simple solution to this.

Your shortcut is not sound, how do you guarantee that there are all fifteen terms 1 , a , a 2 , , a 14 1,a,a^2,\ldots,a^{14} as well?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...