700 followers problem (2 in 1)

Algebra Level 3

In ( 4 x 2 + 1 2 x ) 15 { (4{ x }^{ 2 }+\frac { 1 }{ 2x } ) }^{ 15 } Find the value of y + z y+z when y y is the term which has no x x and z z is the value of x x which makes the two middle terms are equal to each other.


The answer is 3003.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

The binomial expansion of the expression is:

( 4 x 2 + 1 2 x ) 15 = n = 0 15 ( 15 n ) ( 4 x 2 ) 15 n ( 2 x ) n \displaystyle \left( 4x^2+\dfrac {1}{2x} \right)^{15} = \sum _{n=0} ^{15} {\begin{pmatrix} 15 \\ n \end{pmatrix} (4x^2)^{15-n} (2x)^{-n}}

= n = 0 15 ( 15 n ) 2 2 ( 15 n ) n x 2 ( 15 n ) n = n = 0 15 ( 15 n ) ( 2 x ) 30 3 n \displaystyle \quad \quad \quad \quad \quad \quad = \sum _{n=0} ^{15} {\begin{pmatrix} 15 \\ n \end{pmatrix} 2^{2(15-n)-n} x^{2(15-n)-n}} = \sum _{n=0} ^{15} {\begin{pmatrix} 15 \\ n \end{pmatrix} \left( 2x \right) ^{30-3n}}

The term without x x is when 30 3 n = 0 n = 10 30-3n=0 \quad \Rightarrow n = 10 .

The term y = ( 15 10 ) = 3003 y = \begin{pmatrix} 15 \\ 10 \end{pmatrix} = 3003

The middle two terms are when n = 7 n=7 and n = 8 n=8 , and when they are equal, x = z x=z is given by:

( 15 7 ) ( 2 z ) 30 21 = ( 15 8 ) ( 2 z ) 30 24 ( 2 z ) 3 = 1 z = 1 2 \Rightarrow \begin{pmatrix} 15 \\ 7 \end{pmatrix} (2z)^{30-21} = \begin{pmatrix} 15 \\ 8 \end{pmatrix} (2z)^{30-24} \quad \Rightarrow (2z)^3 = 1\quad \Rightarrow z = \frac{1}{2}

Therefore, y + z = 3003.5 \quad y+z = \boxed{3003.5}

Afreen Sheikh
Jan 14, 2015

we can find y by taking equation 2(15-p)=p where p is the term in binomial expansion hence p=10 hence value of y = 15 ! 10 ! 5 ! = 3003 y=\frac{15!}{10! 5!}=3003

Now as for z, middle terms are 7 and 8

and we know 15C8=15C7

thus for 8th term ( ( 2 x ) 2 ) 7 ( 2 x ) 8 = ( 2 x ) 6 \frac{((2x)^{2})^{7}}{(2x)^{8}} =(2x)^{6}

and for 7 th term ( ( 2 x ) 2 ) 8 ( 2 x ) 7 = ( 2 x ) 9 \frac{((2x)^{2})^{8}}{(2x)^{7}} = (2x)^{9}

making both equal ( 2 x ) 9 = ( 2 x ) 6 (2x)^{9} = (2x)^{6}

dividing ( 2 x ) ( 9 6 ) = 1 (2x)^{(9-6)}=1

( 2 x ) 3 = 1 (2x)^{3}=1

hence z= x=0.5 and y+z=3003.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...