713... That was a vault in Gringotts, right?

Calculus Level 2

Consider the limit

lim x 7 x + 13 49 x 2 + 13 x \lim_{x\to \infty} 7x+13-\sqrt{49x^2+13x}

If the limit can be expressed as a b \frac{a}{b} , where gcd ( a , b ) = 1 \gcd(a,b)=1 , enter a + b a+b . If the limit is + +\infty or -\infty , enter -1 or -2, respectively. If the limit is an irrational real number or 0, enter 0.


The answer is 183.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kb E
Sep 21, 2017

7 x + 13 49 x 2 + 13 x = 13 + 7 x 49 x 2 + 13 x 1 = 13 + 49 x 2 49 x 2 13 x 7 x + 49 x 2 + 13 x = 13 + 13 x 7 x + 49 x 2 + 13 = 13 + 13 7 + 49 + 13 / x 2 7x+13-\sqrt{49x^2+13x} = 13 + \frac{7x-\sqrt{49x^2+13x}}{1} = 13+\frac{49x^2-49x^2-13x}{7x+\sqrt{49x^2+13x}} = 13+ \frac{-13x}{7x+\sqrt{49x^2+13}}= 13 + \frac{-13}{7+\sqrt{49+13/x^2}} lim x 13 + 13 7 + 49 + 13 / x 2 = 13 13 14 = 169 14 169 + 14 = 183 \lim_{x\to\infty} 13+\frac{-13}{7+\sqrt{49+13/x^2}}= 13-\frac{13}{14}=\frac{169}{14} \implies 169+14=183

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...