71st Problem 2016

Algebra Level 2

( 2 3 ) 2 3 0 3 2 3 = ? \huge(2^3)^{2^{3^{0^{3^{2^{3}}}}}} \ = \ ?


Check out the set: 2016 Problems


The answer is 64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Angela Fajardo
Mar 23, 2016

Tower Rule of Exponents then Power Rule for the end...

( 2 3 ) 2 3 0 3 2 3 = ? = ( 2 3 ) 2 3 0 3 8 = ( 2 3 ) 2 3 0 6561 = ( 2 3 ) 2 3 0 = ( 2 3 ) 2 1 = ( 2 3 ) 2 = ( 2 3 × 2 ) = ( 2 6 ) = 64 \Huge \left( { 2 }^{ { 3 } } \right) ^{ { 2 }^{ { 3 }^{ { 0 }^{ { 3 }^{ { 2 }^{ 3 } } } } } }=?\\ \Huge =\quad \left( { 2 }^{ { 3 } } \right) ^{ { 2 }^{ { 3 }^{ { 0 }^{ { 3 }^{ { 8 } } } } } }\\ \Huge =\quad \left( { 2 }^{ { 3 } } \right) ^{ { 2 }^{ { 3 }^{ { 0 }^{ 6561 } } } }\\ \Huge =\quad \left( { 2 }^{ { 3 } } \right) ^{ { 2 }^{ { 3 }^{ { 0 } } } }\\ \Huge =\quad \left( { 2 }^{ { 3 } } \right) ^{ { 2 }^{ { 1 } } }\\ \Huge =\quad \left( { 2 }^{ { 3 } } \right) ^{ { 2 } }\\ \Huge =\quad \left( { 2 }^{ { 3\times 2 } } \right) \\ \Huge =\quad \left( { 2 }^{ 6 } \right) \\ \Huge =\quad \boxed { 64 }

OR

Simply:

0 a = 0 f o r a > 0 \Huge { 0 }^{ a }=0\\ \Huge for\quad a>0

( 2 3 ) 2 3 0 3 2 3 = ? = ( 2 3 ) 2 3 0 = ( 2 3 ) 2 1 = ( 2 3 ) 2 = ( 2 3 × 2 ) = ( 2 6 ) = 64 \Huge \left( { 2 }^{ { 3 } } \right) ^{ { 2 }^{ { 3 }^{ { 0 }^{ { 3 }^{ { 2 }^{ 3 } } } } } }=?\\ \Huge =\quad \left( { 2 }^{ { 3 } } \right) ^{ { 2 }^{ { 3 }^{ { 0 } } } }\\ \Huge =\quad \left( { 2 }^{ { 3 } } \right) ^{ { 2 }^{ { 1 } } }\\ \Huge =\quad \left( { 2 }^{ { 3 } } \right) ^{ { 2 } }\\ \Huge =\quad \left( { 2 }^{ { 3\times 2 } } \right) \\ \Huge =\quad \left( { 2 }^{ 6 } \right) \\ \Huge =\quad \boxed { 64 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...