7 7 7 7 ! 7^{7^{7^{7}}}!

Find the last two digits of 7 7 7 7 7 7 7 + 7 7 7 7^{7^{7^{7}}}-7^{7^{7}}+7^7-7


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zyberg Nee
Jun 25, 2016

ϕ ( 100 ) = 40 \phi(100) = 40

ϕ ( 40 ) = 16 \phi(40)=16

We divide the original problem into smaller chunks:

I) 7 7 7 7 ( m o d 100 ) 7 7 7 7 ( m o d 16 ) ( m o d 40 ) ( m o d 100 ) 7^{7^{7^{7}}} \pmod{100} \equiv 7^{7^{7^{7} \pmod{16}} \pmod{40}} \pmod{100}

I) a) 7 7 = 4 9 3 7 1 3 7 7 ( m o d 16 ) 7^7 = 49^3 * 7 \equiv 1^3 * 7 \equiv 7 \pmod{16}

I) b) 7 7 4 9 3 7 23 ( m o d 40 ) 7^7 \equiv 49^3 * 7 \equiv 23 \pmod{40}

II) 7 7 7 ( m o d 100 ) 7 7 7 ( m o d 40 ) ( m o d 100 ) 7^{7^{7}} \pmod{100} \equiv 7^{7^{7} \pmod{40}} \pmod {100} ; From earlier we know that 7 7 23 ( m o d 40 ) 7^7 \equiv 23 \pmod{40} , so 7 7 7 7 23 7^{7^{7}} \equiv 7^{23}

III) 7 7 43 ( m o d 100 ) 7^7 \equiv 43 \pmod{100}

And finally we get:

7 23 7 23 + 43 7 36 ( m o d 100 ) 7^{23} - 7^{23} + 43 - 7 \equiv \boxed{36} \pmod{100}

good one..+1

Ayush G Rai - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...