8 8 Stars, 8 8 Bars and 8 8 Pars

How many distinct possible ways are there to express 1000 1000 as the sum of all positive integers in decreasing order (but not strictly), using only 8 8 's?

Assumption: The sum can include terms that concatenate more than one 8 8 . For instance, 88 88 , 888 888 and 8888 8888 .


Inspiration.

11 11 14 14 10 10 15 15 9 9 or less 16 16 or more 12 12 13 13

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sathvik Acharya
Mar 20, 2021

We need to represent 1000 1000 as the sum of positive integers that only contain 8 8 in their decimal expansion. This is equivalent to finding the number of non-negative integer solutions to the equation, 888 x + 88 y + 8 z = 1000 111 x + 11 y + z = 125 888x+88y+8z=1000\;\; \Leftrightarrow\;\; 111x+11y+z=125 Since x , y , z 0 x,y,z\ge 0 , x 125 111 x { 0 , 1 } y 125 11 y { 0 , 1 , 2 , , 10 , 11 } z 125 1 z { 0 , 1 , 2 , , 124 , 125 } \begin{aligned} x\le \left\lfloor \dfrac{125}{111}\right\rfloor &\implies x\in \{0,1\} \\ y\le \left\lfloor \dfrac{125}{11}\right\rfloor &\implies y\in \{0,1,2,\cdots, 10,11\} \\ z\le \left\lfloor \dfrac{125}{1}\right\rfloor &\implies z\in\{0,1,2,\cdots ,124,125\} \end{aligned} Case 1: x = 0 11 y + z = 125 \;\;x=0 \implies 11y+z=125

Note, z = 125 11 y z=125-11y is a non-negative integer for all y { 0 , 1 , 2 , , 10 , 11 } y\in \{0,1,2,\cdots, 10,11\} . Hence, this case leads to 12 12 possible solutions.

Case 2: x = 1 11 y + z = 14 \;\;x=1 \implies 11y+z=14

Note, z = 12 11 y z=12-11y is a non-negative integer for all y { 0 , 1 } y\in \{0,1\} . Hence, this case leads to 2 2 possible solutions.

Therefore, there are 12 + 2 = 14 12+2=\boxed{14} possible solutions to the given equation.

List of all possible ways to represent 1000 1000 using only 8 8 's :

1000 = 8 + + 8 125 = 88 1 + 8 + + 8 114 = 88 + 88 2 + 8 + + 8 103 = 88 + + 88 3 + 8 + + 8 92 = 88 + + 88 4 + 8 + + 8 81 = 88 + + 88 5 + 8 + + 8 70 = 88 + + 88 6 + 8 + + 8 59 = 88 + + 88 7 + 8 + + 8 48 = 88 + + 88 8 + 8 + + 8 37 = 88 + + 88 9 + 8 + + 8 26 = 88 + + 88 10 + 8 + + 8 15 = 88 + + 88 11 + 8 + + 8 4 = 888 1 + 8 + + 8 14 = 888 1 + 88 1 + 8 + + 8 3 \begin{aligned} 1000&=\underbrace{8+\cdots+8}_{\text{125}} \\ &=\underbrace{88}_{\text{1}}+\underbrace{8+\cdots+8}_{\text{114}} \\ &=\underbrace{88+88}_{\text{2}}+\underbrace{8+\cdots+8}_{\text{103}} \\ &=\underbrace{88+\cdots+88}_{\text{3}}+\underbrace{8+\cdots+8}_{\text{92}} \\ &=\underbrace{88+\cdots+88}_{\text{4}}+\underbrace{8+\cdots+8}_{\text{81}} \\ &=\underbrace{88+\cdots+88}_{\text{5}}+\underbrace{8+\cdots+8}_{\text{70}} \\ &=\underbrace{88+\cdots+88}_{\text{6}}+\underbrace{8+\cdots+8}_{\text{59}} \\ &=\underbrace{88+\cdots+88}_{\text{7}}+\underbrace{8+\cdots+8}_{\text{48}} \\ &=\underbrace{88+\cdots+88}_{\text{8}}+\underbrace{8+\cdots+8}_{\text{37}} \\ &=\underbrace{88+\cdots+88}_{\text{9}}+\underbrace{8+\cdots+8}_{\text{26}} \\ &=\underbrace{88+\cdots+88}_{\text{10}}+\underbrace{8+\cdots+8}_{\text{15}} \\ &=\underbrace{88+\cdots+88}_{\text{11}}+\underbrace{8+\cdots+8}_{\text{4}} \\ &=\underbrace {888}_{1}+\underbrace{8+\cdots+8}_{\text{14}} \\ &=\underbrace {888}_{1}+\underbrace{88}_{\text{1}}+\underbrace{8+\cdots+8}_{\text{3}} \\ \end{aligned}

Sathvik Acharya - 2 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...