..., 98, 99, 100!

Algebra Level 3

S = 1 90 × 91 + 1 91 × 92 + 1 92 × 93 + 1 93 × 94 + 1 94 × 95 + 1 95 × 96 + 1 96 × 97 + 1 97 × 98 + 1 98 × 99 + 1 99 × 100 \begin{aligned} S &= \frac {1}{90\times 91} + \frac {1}{91\times 92} + \frac {1}{92\times 93} + \frac {1}{93\times 94} \\ & + \frac {1}{94\times 95} + \frac {1}{95\times 96} + \frac {1}{96\times 97} + \frac {1}{97\times 98} \\ & + \frac {1}{98\times 99} + \frac {1}{99\times 100}\\ \end{aligned}

If S = a b S = \frac {a}{b} , where a a and b b are coprime positive integers, what is the value of a + b a+b ?


The answer is 901.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Lawrence Sun
May 20, 2014

For any real number a a , we have 1 a ( a + 1 ) = 1 a 1 a + 1 \frac{1}{a(a+1)} = \frac{1}{a} - \frac{1}{a+1} . Thus: S = 1 90 1 91 + 1 91 + . . . + 1 99 1 100 S = \frac{1}{90} - \frac{1}{91} + \frac{1}{91} + ... + \frac{1}{99} - \frac{1}{100} . This telescopes to give us S = 1 90 1 100 = 1 900 S = \frac{1}{90} - \frac{1}{100} = \frac{1}{900} which gives the answer of 1 + 900 = 901 1 + 900 = 901

S = ( 1 90 1 91 ) + ( 1 91 1 92 ) + + ( 1 99 1 100 ) S=\left(\frac{1}{90}-\frac{1}{91}\right)+\left(\frac{1}{91}-\frac{1}{92}\right)+\cdots +\left(\frac{1}{99}-\frac{1}{100}\right) or, S = ( 1 90 1 100 ) = 1 900 S=\left(\frac{1}{90}-\frac{1}{100}\right)=\frac{1}{900} Then the answer follows.

Dheeraj Chakilam
May 20, 2014

A fraction with a product in the denominator can be split into two fractions in subtraction. For example: \­( \frac {1}{a \times b} ) where \­( b > a ) can be divided into \­( \frac {1}{a} - \frac{1}{b}. ) Similarly \­( \frac {1}{90 \times 91} ) can be split into \­( \frac {1}{90} - \frac {1}{91} ). and so can \­( {1}{91 \times 92} ) to \­( \frac {1}{91} - \frac{1}{92} ). But the second partial from the previous term and the first partial fraction from the second term cancel each other out, in the case of the first two terms \­( \frac {1}{91} ) is cancelled out. This goes on until \­( \frac {1}{99) ) gets cancelled and the only remaining terms are \­( \frac {1}{90} ) and 1 100 - \frac {1}{100} in addition.

That is equal to \­( \frac {10}{9000} ) i.e. \­( \frac {1}{900} ) and it is in the form \­( \frac {a}{b} ) where \­( a = 1 ) and \­( b = 900 ). Hence \­( a + b = 901 ).

Rasel Ahammed
May 20, 2014

=\frac {2}{90 92} + \frac {2}{92 94} + \frac {2}{94 96} + \frac{2}{96 98} + \frac {2}{98*100}

=\frac {4}{90 94} + \frac {4}{94 98} + \frac {2}{98*100}

=\frac {8}{90 98} + \frac {2}{98 100}

=\frac {1}{900}

Wai Zhen Liew
May 20, 2014

partial the 1/90*91=1/r-1/r+1 then using summation to find the answer 1/90-1/91+1/91-1/92+....-1/100 =1/90-1/100 =100-90/9000=1/900 S=a/b a+b=901

Subham Sun
May 20, 2014

That is same as $\frac {1}{90}-\frac {1}{91}+\frac {1}{91}-\frac {1}{92}+....\frac{1}{99}-\frac {1}{100}=\frac {1}{90}-\frac {1}{100}=\frac {1}{900}$

Calvin Lin Staff
May 13, 2014

Notice that 1 n × ( n + 1 ) = n + 1 n n × ( n + 1 ) = 1 n 1 n + 1 \frac {1}{n \times (n+1)} = \frac {n+1 - n} { n \times (n+1)} = \frac {1}{n} - \frac {1}{n+1} . We use the method of difference to obtain S = 1 90 1 91 + 1 91 1 92 + 1 92 1 93 + + 1 98 1 99 + 1 99 1 100 = 1 90 1 100 = 100 90 90 × 100 = 1 900 \begin{aligned} S &= \frac {1}{90} - \frac {1}{91} + \frac {1}{91} - \frac {1}{92} + \frac {1}{92} - \frac {1}{93} + \ldots + \frac {1}{98} - \frac {1}{99} + \frac {1}{99} - \frac {1}{100} \\ &= \frac {1}{90} - \frac {1}{100} \\ &= \frac {100 - 90 }{90 \times 100} \\ &= \frac {1}{900} \\ \end{aligned}

Hence a + b = 1 + 900 = 901 a+b = 1 + 900 = 901 .

Vishnu Suthar
May 20, 2014

S=190×91+191×92+192×93+193×94+194×95+195×96+196×97+197×98+198×99+199×100 S=1/900 BUT S=a/b so a/b=1/900 thus a+b=1+900=901

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...