999 odd numbers

Algebra Level 2

Find the sum of the first 999 999 odd numbers.


Bonus : Can you generalize for the first n n odd numbers?


The answer is 998001.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

First lets generalize this for n using the following formula: \large \text {First lets generalize this for n using the following formula:}

S n = n 2 [ 2 a + ( n 1 ) d ] \large \color{#D61F06} S_n= \frac{n}{2}[2a\ +\ (n - 1) d]

In the arithmetic sum: 1 + 3 + 5 + 7 + ... + n; a = 1, d = 2, n =n (because we are generalizing this for n) \large \text {In the arithmetic sum: 1 + 3 + 5 + 7 + ... + n; a = 1, d = 2, n =n (because we are generalizing this for n)}

S n = n 2 [ 2 + ( n 1 ) 2 ] = S n = n 2 [ 2 + 2 n 2 ] = S n = 1 2 n × 2 n = S n = 2 n 2 2 = n 2 \large \color{#20A900} S_n= \frac{n}{2}[2\ +\ (n - 1) 2] \\ = \large \color{#20A900}S_n= \frac{n}{2}[2\ +2n - 2] \\ \large \color{#20A900} =\ S_n= \frac{1}{2}n \times 2n \\ \large \color{#20A900} =\ S_n= \frac{2n^2}{2} \\ \large \color{#3D99F6} \boxed{= n^2}

Since we have generalized it for n, we can now simply insert the data that we have into this equation \large \text {Since we have generalized it for n, we can now simply insert the data that we have into this equation}

99 9 2 = 998001 \large \color{#EC7300} \therefore \boxed{999^2 = 998001}

Marco Brezzi
Oct 2, 2017

The sum of the first n n odd numbers is

S ( n ) = k = 1 n 2 k 1 S(n)=\displaystyle\sum_{k=1}^n 2k-1

To find a closed form

S ( n ) = k = 1 n 2 k 1 = k = 1 n 2 k k = 1 n 1 = 2 k = 1 n k k = 1 n 1 = 2 n ( n + 1 ) 2 n = n ( n + 1 ) n = n 2 \begin{aligned} S(n)&=\displaystyle\sum_{k=1}^n 2k-1\\ &=\displaystyle\sum_{k=1}^n 2k-\displaystyle\sum_{k=1}^n 1\\ &=2\displaystyle\sum_{k=1}^n k-\displaystyle\sum_{k=1}^n 1\\ &=2\cdot\dfrac{n(n+1)}{2}-n=n(n+1)-n=n^2 \end{aligned}

In this case n = 999 n=999

S ( 999 ) = 99 9 2 = 998001 S(999)=999^2=\boxed{998001}

. .
Apr 30, 2021

The n n th odd or even number is equal to 2 n 1 2n - 1 , or 2 n 2n .

So, 999th odd is 2 × \times 999 - 1 = 1997.

The mean of 1 and 1997 is 999, so the answer is equal to 999 + 1998 × 499 999 + 1998 \times 499 .

999 + 2 × 999 × 499 = 999 × ( 1 + 2 × 499 ) = 999 × ( 1 + 998 ) = 999 × 999 = 99 9 2 = ( 1000 1 ) 2 = 100 0 2 2 × 1000 × 1 + 1 2 = 1000000 2000 + 1 = 998001 999 + 2 \times 999 \times 499 = 999 \times ( 1 + 2 \times 499 ) = 999 \times ( 1 + 998 ) = 999 \times 999 = 999 ^ { 2 } = ( 1000 - 1 ) ^ { 2 } = 1000 ^ { 2 } - 2 \times 1000 \times 1 + 1 ^ { 2 } = 1000000 - 2000 + 1 = 998001

Razing Thunder
Jul 2, 2020

FORMULA --> square of n=998001

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...