A Hot 2021 2021 Sum

Algebra Level 2

k = 1 2021 ( 1 ) k ( k + 1 ) 2 k = ? \large \sum_{k=1}^{2021} (-1)^\frac {k(k+1)}2 k = \ ?

1 1 1 -1 2 -2 2 2 0 0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 15, 2021

Let a k = ( 1 ) k ( k + 1 ) 2 k a_k = (-1)^\frac {k(k+1)}2 k . Then

{ a k } = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , a k } a k = { k if k m o d 4 = 1 , 2 + k for k m o d 4 = 3 , 0 \{ a_k \} = \{ -1 , -2, 3, 4, - 5, -6, 7, 8, -9, -10, 11, 12, \cdots a_k \} \implies a_k = \begin{cases} - k & \text{if } k \bmod 4 = 1, 2 \\ + k & \text{for } k \bmod 4 = 3, 0 \end{cases}

Let S n = k = 1 n ( 1 ) k ( k + 1 ) 2 k S_n = \displaystyle \sum_{k=1}^n (-1)^\frac {k(k+1)}2 k . Then

S 1 = 1 S 2 = 3 S 3 = 0 S 4 = 4 S 5 = 1 S 6 = 7 S 7 = 0 S 8 = 8 S 9 = 1 S 10 = 11 S 11 = 0 S 12 = 12 \begin{array} {llll} S_1 = - 1 & S_2 = - 3 & S_3 = 0 & S_4 = 4 \\ S_5 = - 1 & S_6 = - 7 & S_7 = 0 & S_8 = 8 \\ S_9 = - 1 & S_{10} = - 11 & S_{11} = 0 & S_{12} = 12 \\ \cdots & \cdots & \cdots & \cdots \end{array}

S n = { 1 if n m o d 4 = 1 n 1 if n m o d 4 = 2 0 if n m o d 4 = 3 n if n m o d 4 = 0 \implies S_n = \begin{cases} -1 & \text{if } n \bmod 4 = 1 \\ -n-1 & \text{if } n \bmod 4 = 2 \\ 0 & \text{if } n \bmod 4 = 3 \\ n & \text{if } n \bmod 4 = 0 \end{cases}

Since 2021 m o d 4 = 1 2021 \bmod 4 = 1 , S 2021 = 1 S_{2021} = \boxed{-1} .


Earlier solution:

S = k = 1 2021 ( 1 ) k ( k + 1 ) 2 k = 1 2 + 3 + 4 5 6 + 7 + 8 2021 = k = 0 505 ( 4 k + 1 ) k = 0 504 ( 4 k + 2 ) + k = 0 504 ( 4 k + 3 ) + k = 0 505 4 k = k = 0 505 1 + k = 0 504 1 = 506 + 505 = 1 \begin{aligned} S & = \sum_{k=1}^{2021} (-1)^\frac {k(k+1)}2 k \\ & = - 1 - 2 + 3 + 4 - 5 - 6 + 7 + 8 - \cdots - 2021 \\ & = \blue{- \sum_{k=0}^{505} (4k+1)} \red{ - \sum_{k=0}^{504} (4k+2) + \sum_{k=0}^{504} (4k+3)} \blue{ + \sum_{k=0}^{505} 4k} \\ & = \blue{- \sum_{k=0}^{505} 1} \red{ + \sum_{k=0}^{504} 1} \\ & = - 506 + 505 = \boxed{-1} \end{aligned}

Thanks a lot, Sir. By the way, I posted a new problem. Check it out! https://brilliant.org/problems/gaping-tuples/

Utsav Playz - 4 months, 3 weeks ago
Lingga Musroji
Jan 16, 2021

( 1 2 + 3 + 4 ) + ( 5 6 + 7 + 8 ) + + ( 2017 2018 + 2019 + 2020 ) 2021 = 4 × 500 2021 = 1 (-1-2+3+4)+(-5-6+7+8)+\ldots +(-2017-2018+2019+2020)-2021=4\times500-2021=-1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...