a + b 22 a 2 + b 11 \frac{a+b^{22}}{a^2+b^{11}}

Algebra Level 2

If a > b > 1 a>b>1 and log a b + 6 11 log b a = 67 11 , \log_a b+\frac{6}{11}\log_b a=\frac{67}{11}, what is the value of a + b 22 a 2 + b 11 ? \frac{a+b^{22}}{a^2+b^{11}}?

1 11 \frac{1}{11} 1 2 1 2 \frac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Trevor B.
Mar 7, 2014

Let log a b = x . \log_ab=x. Then log b a = 1 x \log_ba=\frac{1}{x} Rearrange the given information. x + 6 11 x = 67 11 x+\dfrac{6}{11x}=\dfrac{67}{11} Multiplying by 11 x , 11x, 11 x 2 + 6 = 67 x , 11x^2+6=67x, so 11 x 2 67 x + 6 = 0. 11x^2-67x+6=0. Solving this equation for x x yields that x = 6 x=6 or x = 1 11 . x=\frac{1}{11}. Since x = log a b x=\log_ab and a > b , a>b, log a b < 1. \log_ab<1. This causes x = 6 x=6 to be an extraneous solution, so x = log a b = 1 11 . x=\log_ab=\frac{1}{11}. This means that b = a 11 . b=\sqrt[11]{a}. Now plug this in to the expression we are trying to find. a + b 22 a 2 + b 11 = a + ( a 11 ) 22 a 2 + ( a 11 ) 11 = a + a 2 a 2 + a = 1 \dfrac{a+b^{22}}{a^2+b^{11}}=\dfrac{a+(\sqrt[11]{a})^{22}}{a^2+(\sqrt[11]{a})^{11}}=\dfrac{a+a^2}{a^2+a}=\boxed{1}

Isaac Lu
Mar 7, 2014

log a b + 6 11 log b a = 67 11 \log_{a}{b}+\frac{6}{11}\log_{b}{a}=\frac{67}{11}

log a b + 6 11 ( 1 log a b ) = 67 11 \log_{a}{b}+\frac{6}{11}\left(\frac{1}{\log_{a}{b}}\right)=\frac{67}{11}

Let x = log a b \text{ Let }x=\log_{a}{b}

x + 6 11 x = 67 11 x+\frac{6}{11x}=\frac{67}{11}

Multiply both sides by 11 x \text{Multiply both sides by }11x

11 x 2 + 6 = 67 x 11{x}^{2}+6=67x

11 x 2 67 x + 6 = 0 11{x}^{2}-67x+6=0

( 11 x 1 ) ( x 6 ) = 0 (11x-1)(x-6)=0

x = 1 11 ; x = 6 x=\frac{1}{11} ;x=6

x = log a b = 1 11 ; a 1 11 = b ; a = b 11 x=\log_{a}b=\frac{1}{11}; a^{\frac{1}{11}}=b; \boxed{a=b^{11}}

x = log a b = 6 ; a 6 = b x=\log_{a}b=6;{a}^{6}=b

Since a is greater than b, we disregard the a 6 = b because both must be greater than 1. \text{Since a is greater than b, we disregard the }{a}^{6}=b\text{ because both must be greater than }1.

Solve for a + b 22 a 2 + b 11 . \text{Solve for }\displaystyle\frac{a+{b}^{22}}{{a}^{2}+{b}^{11}}.

b 11 + b 22 ( b 11 ) 2 + b 11 = b 11 + b 22 b 22 + b 11 = 1 \displaystyle\frac{{b}^{11}+{b}^{22}}{{{(b}^{11})}^{2}+{b}^{11}}=\frac{{b}^{11}+{b}^{22}}{{b}^{22}+{b}^{11}}=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...