Solve for x , y and z : (x, y and z are positive)
xy + x + y = 23
yz + y + z = 31
zx + z + x = 47
What is x + y + z ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We may assume a=x+1, b=y+1, c=z+1 and solve easily to get a,b,c hence x,y,z.
But it is a briilliant solution.
Rewrite x y + x + y = 2 3 y z + y + z = 3 1 z x + z + x = 4 7 ⇒ ⇒ ⇒ x + ( 1 + x ) y = 2 3 y + ( 1 + y ) z = 3 1 x + ( 1 + x ) z = 4 7 ( 1 ) ( 2 ) ( 3 ) First we eliminate z by multiplying ( 2 ) with ( 1 + x ) and multiplying ( 3 ) with ( 1 + y ) and then subtracting, yield ( 1 + x ) y − ( 1 + y ) x = 1 6 + 4 7 y − 3 1 x [ b ] r ( 1 + y ) x + ( 1 + y ) ( 1 + x ) z = 4 7 ( 1 + y ) ( 1 + x ) y + ( 1 + x ) ( 1 + y ) z = 3 1 ( 1 + x ) − Hence ( 1 + x ) y − ( 1 + y ) x y + x y − x − x y − 4 7 y + 3 1 x 3 2 x − 4 8 y 2 x − 3 y 3 y y = 1 6 + 4 7 y − 3 1 x = 1 6 = 1 6 = 1 = 2 x − 1 = 3 2 x − 1 . Substitute y to ( 1 ) , yield x + ( 1 + x ) ( 3 2 x − 1 ) 3 x + ( x + 1 ) ( 2 x − 1 ) 3 x + 2 x 2 + x − 1 − 6 9 2 x 2 + 4 x − 7 0 x 2 + 2 x − 3 5 ( x + 7 ) ( x − 5 ) x 1 = − 7 = 2 3 = 6 9 = 0 = 0 = 0 = 0 or x 2 = 5 . Take the positive value of x and find y and z . y y = 3 2 x − 1 = 3 2 ( 5 ) − 1 = 3 and y + ( 1 + y ) z 3 + ( 1 + 3 ) z 3 + 4 z 4 z z = 3 1 = 3 1 = 3 1 = 2 8 = 7 . Thus, x + y + z = 5 + 3 + 7 = 1 5 .
how abt this xy(1/x + 1/y) + xy = 23 xy(1/x+1y+1) = 23 therefore xy = 23 or (1/x+1y+1) = 23 substituting xy = 23 in xy + y + x = 23 == 23 + (x + y) = 23 == x + y = 0 simlarly y +z and x + z = 0 therefore x + y +z = 0 u can substitute the value and u'll get the correct ans
You deserve level 5 Tunk Fey Ariawan
we can use substitution method to solve this problem...
lets take 'x' as the subject & represent y,z in terms of x
♦(eqn.1) xy+ x +y = 23 ------> y = (23-x)/(1+x)
♦(eqn.3) zx+ z + x = 47 ------>z = (47-x)/(1+x)
substitute for y,z in (eqn.2) yz+y+z =31
===>{ (23-x)(47-x)/(1+x)² } + { (23-x)/(1+x) } + { (47-x)/(1+x) } = 31 ----- multiply both sides by (1+x)²
==>(23-x)(47-x) + ( (23-x )+(47-x) ) (1+x) = 31 (1+x)²
===> -32x²-64x +1120 =0
===>x²+2x -35 =0
-->(x+7)(x-5) = 0 ie x= 5 or -7
x>0(given) ====> x=5
y=(23-x)/(1+x)-----put x=5 ----> y=3
z=(47-x)/(1+x)-----put x=5-----> z=7
so (x,y,z) = (5,3,7) =====> x+y+z = 15
HENCE , (X+Y+Z =15 ) IS THE ANSWER
Problem Loading...
Note Loading...
Set Loading...
xy+x+y=23 ,so (x+1)(y+1)=24 similarly (y+1)(z+1)=32,(x+1)(z+1)=48
solving these eq. we get x=5,y=3,z=7