Fortuner Fortunes

Calculus Level 3

Fortuner, the latest SUV by Toyota Motors, consumes diesel at the rate of 1 400 × [ 1000 X + X ] \frac{1}{400} \times [ \frac{1000} { X} +X] litres per km, when driven at the speed of X X km per hour. If the cost of diesel is Rs 35 per litre and the driver is paid at the rate of Rs 125 per hour, what is the approximate optimal speed (in km per hour, as an integer) of Fortuner that will minimize the total cost of a round trip of 800 kilometers?

Image credit: Toyota Motors


The answer is 49.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Aditya Joshi
Mar 3, 2014

I think you should provide a better description for how we should write the answer. For instance, if the answer is x x , enter the answer as x \lfloor x \rfloor .

Anyway, the total distance that was covered was 800 × 2 = 1600 800 \times 2 = 1600 km. The time required for this journey, if we traveled at X X km/hr is 1600 X \dfrac{1600}{X} hours. The driver charges Rs 125 per hour, so the total charges will be 125 × 1600 x 125 \times \dfrac{1600}{x} .

Now, the cost of diesel is Rs 35 per litre.

We need to ask ourselves, how many litres do we need for this journey? Well, if for every km traveled, 1 400 ( 1000 X + X ) \dfrac{1}{400} \left(\dfrac{1000}{X} + X \right) litres were required, then how many litres will be required for the distance that we travel, which is 1600 1600 km. That is simply

1600 × ( 1 400 ( 1000 X + X ) ) \Rightarrow 1600 \times \left( \dfrac{1}{400} \left(\dfrac{1000}{X} + X \right) \right)

Thus, we need 1600 × ( 1 400 ( 1000 X + X ) ) 1600 \times \left( \dfrac{1}{400} \left(\dfrac{1000}{X} + X \right) \right) litres. Now, the cost of traveling per litre is Rs 35. Therefore, the cost of traveling the distance that we traveled is

( 1 400 ( 1000 X + X ) ) × 35 × 1600 \Rightarrow \left( \dfrac{1}{400} \left(\dfrac{1000}{X} + X \right) \right) \times 35 \times 1600 .

The total cost as a function of X X is

f ( X ) = ( ( 1 400 ( 1000 X + X ) ) × 35 × 1600 ) + 1600 × 125 X \Rightarrow f(X) =\left( \left( \dfrac{1}{400} \left(\dfrac{1000}{X} + X \right) \right) \times 35 \times 1600 \right) + \dfrac{1600 \times 125}{X}

We want to minimize f ( X ) f(X) . Taking the derivative, finding f ( X ) f'(X) we can a local minima of X = 10 170 7 49.28 X = 10\sqrt{\dfrac{170}{7}} \approx 49.28 . Therefore, our answer is 49.28 49 49.28 \approx \boxed{49} .

WELL where is DIESEL RS.35

devansh shringi - 7 years, 3 months ago

Log in to reply

I didn't understand your question.

Aditya Joshi - 7 years, 3 months ago
Shravan Jain
Mar 3, 2014

G i v e n t h a t t h e d i e s e l c o n s u m p t i o n i s a t t h e r a t e = 1 400 [ 100 x + x ] l i t r e s p e r k m C o s t o f d i e s e l = R s 35 p e r l i t r e P a y m e n t t o t h e d r i v e r = R s 125 p e r h o u r . A l s o g i v e n t h a t t h e S U V i s d r i v e n a t t h e s p e e d o f x k m p e r h o u r . T o t a l c o s t ( y ) = C o s t o f d i e s e l + P a y m e n t t o d r i v e r = 1 400 [ 100 x + x ] × 800 × 35 + 125 × [ 800 x ] N o w d i f f e r e n t i a t i n g b o t h s i d e s i n t h e a b o v e e q u a t i o n w i t h r e s p e c t t o x a n d e q u a t i n g t o z e r o . d y d x = 170000 x 2 + 70 = 0 x = 49 k m p e r h o u r . Given\quad that\quad the\quad diesel\quad consumption\quad is\quad at\quad the\quad rate=\quad \frac { 1 }{ 400 } \left[ \frac { 100 }{ x } +x \right] \quad litres\quad per\quad km\\ Cost\quad of\quad diesel=\quad Rs\quad 35\quad per\quad litre\\ Payment\quad to\quad the\quad driver=\quad Rs\quad 125\quad per\quad hour.\\ Also\quad given\quad that\quad the\quad SUV\quad is\quad driven\quad at\quad the\quad speed\quad of\quad x\quad km\quad per\quad hour.\\ Total\quad cost(y)=\quad Cost\quad of\quad diesel\quad +\quad Payment\quad to\quad driver\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad =\frac { 1 }{ 400 } \left[ \frac { 100 }{ x } +x \right] \times 800\times 35\quad +\quad 125\times \left[ \frac { 800 }{ x } \right] \\ Now\quad differentiating\quad both\quad sides\quad in\quad the\quad above\quad equation\quad with\quad respect\quad to\quad x\quad and\quad equating\quad to\quad zero.\\ \frac { dy }{ dx } =\frac { -170000 }{ { x }^{ 2 } } \quad +\quad 70=0\quad \\ ⇒\quad \boxed { x=\quad 49\quad km\quad per\quad hour } .

easy one

alan alan - 7 years, 3 months ago

but you haven't considered round trip.....in both case, answer will be same...

Arup Chakrabarty Antar - 7 years, 3 months ago
Venture Hi
Mar 10, 2014

Minimize (800 35/400(1000/x+x))+125 (800/x) x~49.26

Rajnish K.
Mar 6, 2014

Total cost C = (125 800/X) + 800 35 [(100/x) + x]/400; dC/dX = -125 800/X^2 - 70*1000/X^2 + 70 =0; X ~ 49

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...