a a and b b

The 3-digit numbers a b 4 \overline{ab4} and 4 a b \overline{4ab} satisfy the property 400 a b 4 = 4 a b 400 400 - \overline{ab4} = \overline{4ab} - 400 . What is the 2-digit number a b \overline{ab} ?


The answer is 36.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zach Abueg
Jul 3, 2017

400 a b 4 = 4 a b 400 400 ( 100 a + 10 b + 4 ) = ( 400 + 10 a + b ) 400 396 10 ( 10 a + b ) = 10 a + b 396 = 11 ( 10 a + b ) 36 = 10 a + b Note that 10 a + b = a b 36 = a b \displaystyle \begin{aligned} 400 - \overline{ab4} & = \overline{4ab} - 400 \\ 400 - (100a + 10b + 4) & = (400 + 10a + b) - 400 \\ 396 - 10(10a + b) & = 10a + b \\ 396 & = 11(10a + b) \\ 36 & = 10a + b & \small \color{#3D99F6} \text{Note that} \ 10a + b = \overline{ab} \\ \boxed{36} & = \overline{ab} \end{aligned}

Line 2 has a typo. 40 should be 400.

Richard Costen - 3 years, 11 months ago

400 a b 4 = 4 a b 400 400 100 a 10 b 4 = 400 + 10 a + b 400 396 = 110 a + 11 b 11 a b = 396 a b = 396 11 = 36 \begin{aligned} 400 - \overline{ab4} & = \overline{4ab} - 400 \\ 400 - 100a - 10b - 4 & = 400 + 10a + b - 400 \\ 396 & = 110a + 11b \\ \implies 11\overline{ab} & = 396 \\ \implies \overline{ab} & = \frac {396}{11} = \boxed{36} \end{aligned}

400 a b 4 = 4 a b 400 400-\overline{ab4}=\overline{4ab}-400 400 ( 100 a + 10 b + 4 ) = 400 + 10 a + b 400 400-(100a+10b+4)=400+10a+b-400 400 100 a 10 b 4 = 400 + 10 a + b 400 400-100a-10b-4=400+10a+b-400 396 100 a 10 b = 10 a + b 396-100a-10b=10a+b 396 = 110 a + 11 b 396=110a+11b 396 = 11 ( 10 a + b ) 396=11(10a+b) 396 11 = 36 = 10 a + b = a b \dfrac{396}{11}=36=10a+b=\overline{ab}

Aw man, didn't see this while typing my solution!

Zach Abueg - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...