a and b

Algebra Level 2

If a a and b b are real numbers such that a b = 8 ab = 8 and a + b = 10 a + b = 10 , what is the value of a 2 + b 2 a^ 2 + b^ 2 ?


The answer is 84.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

8 solutions

Harsh Shrivastava
Aug 17, 2014

( a + b ) 2 = a 2 + b 2 + 2 a b (a + b)^{2} = a^{2}+b^{2}+2ab

Plugging in the given values, we get the answer as 84 \boxed{84} .

But what is the value of a and b??

Anuj Shikarkhane - 6 years, 9 months ago

Log in to reply

I know you want to find the value of a a and b b to complete this problem, although we don't need to find it. Here is the solution:

First, according to the problem, we got:

{ a 0 b 0 \begin{cases} a\neq 0 \\ b\neq 0 \end{cases}

We have:

a b = 8 a = 8 b ab=8\Rightarrow a=\frac { 8 }{ b }

So:

a + b = 10 a + 8 a = 10 a+b=10\Leftrightarrow a+\frac { 8 }{ a } =10

Multiply all the two sides of this equation with a a , we have:

a 2 + 8 = 10 a a 2 10 a + 8 = 0 { a }^{ 2 }+8=10a\Leftrightarrow { a }^{ 2 }-10a+8=0

Solving this equation, we receive 2 2 values of a a :

a 1 = 5 + 17 { a }_{ 1 }=5+\sqrt { 17 }

a 2 = 5 17 { a }_{ 2 }=5-\sqrt { 17 }

Using the values of a to the equation, we receive 2 2 values of b b

b 1 = 5 17 { b }_{ 1 }=5-\sqrt { 17 }

b 2 = 5 + 17 { b }_{ 2 }=5+\sqrt { 17 }

So there are 2 2 pairs of ( a , b ) (a,b) :

( a , b ) = ( 5 + 17 , 5 17 ) (a,b)=(5+\sqrt { 17 } ,5-\sqrt { 17 })

( a , b ) = ( 5 17 , 5 + 17 ) (a,b)=(5-\sqrt { 17 } ,5+\sqrt { 17 })

Dang Anh Tu - 6 years, 9 months ago

Log in to reply

Okay..... Thanks

Anuj Shikarkhane - 6 years, 9 months ago

But what is the need of finding value of a a & b b @Anuj Shikarkhane ?

Harsh Shrivastava - 6 years, 9 months ago

a = 5 + 17 a = 5 + \sqrt{17} and b = 5 17 b = 5 - \sqrt{17}

Rhoy Omega - 6 years, 9 months ago

Log in to reply

But how did you get that??

Anuj Shikarkhane - 6 years, 9 months ago

( a + b ) 2 = 1 0 2 a 2 + b 2 = 100 2 a b = 100 2 ( 8 ) = 100 16 = 84 (a+b)^2=10^2\rightarrow a^2+b^2=100-2ab=100-2(8)=100-16=\boxed{84}

Sagar Dev
Aug 27, 2014

a 2 + b 2 = ( a + b ) 2 2 a b { a }^{ 2 }+{ b }^{ 2 }={ (a+b) }^{ 2 }-2ab Now Substitute the given values and you will get 84 \boxed{84}

Ashish Menon
May 28, 2016

( a + b ) 2 = a 2 + b 2 + 2 a b ( 10 ) 2 = a 2 + b 2 + 2 × 8 a 2 + b 2 = 100 16 = 84 \begin{aligned} {(a + b)}^2 & = a^2 + b^2 + 2ab\\ {(10)}^2 & = a^2 + b^2 + 2×8\\ a^2 + b^2 & = 100 - 16\\ & = \color{#69047E}{\boxed{84}} \end{aligned}

Dhruv Tyagi
May 29, 2015

Given=>a+b =10 (Equation 1) and, ab = 8 (Equation 2) What we have to find is a 2 + b 2 a^{2}+b^{2}

Using the identity ( a + b ) 2 (a+b)^{2} We get a 2 + b 2 + 2 a b = ( a + b ) 2 a^{2}+b^{2}+2ab = (a+b)^{2} then, ( a + b ) 2 2 a b = a 2 + b 2 (a+b)^{2}-2ab = a^{2}+b^{2} [subtracting 2ab from the simplification of the identity] ( a + b ) 2 2 a b = a 2 + b 2 (a+b)^{2}-2ab = a^{2}+b^{2} [we get the required solution on solving this] ( 10 ) 2 2 ( 8 ) = a 2 + b 2 (10)^{2} - 2(8) = a^{2}+b^{2} [using the equations (1) and (2) in the substitution method] 100-16 = a 2 + b 2 a^{2}+b^{2}

84 = a 2 + b 2 a^{2}+b^{2}

Vishal S
Dec 16, 2014

We can write a^2+b^2 as (a+b)^2-2ab

and given ab=8 and a+b=10

By substituting the given values in a^2+b^2=(a+b)-2ab

we get a^2+b^2=10^2-2 X 8

=>100-16=84

Ritam Baidya
Dec 3, 2014

very easy just whole sq. a+b=10 to get a 2+b 2= 100-16 = 84

Lewis Tough
Aug 28, 2014

Squaring (a+b) gives a 2 a^{2} + b 2 b^{2} +2ab. We know ab=8, so 2ab=16. Because a+b=10 and we have squared it, we find that a 2 a^{2} + b 2 b^{2} +16 is 100. 100-16=84

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...