a a , b b , and c c

1 1 + a + a b + 1 1 + b + b c + 1 1 + c + a c \large \left| \frac { 1 }{ 1+a+ab } +\frac { 1 }{ 1+b+bc } +\frac { 1 }{ 1+c+ac } \right|

Real numbers a a , b b , and c c are such that a b c = 1 abc = 1 , determine the value of the expression above.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 16, 2017

x = 1 1 + a + a b + 1 1 + b + b c + 1 1 + c + c a = 1 1 + a + a b + a a + a b + a b c + a b a b + a b c + a b c a = 1 1 + a + a b + a a + a b + 1 + a b a b + 1 + a = 1 = 1 \begin{aligned} x & = \left|\frac 1{1+a+ab} + \frac 1{1+b+bc} + \frac 1{1+c+ca}\right| \\ & = \left|\frac 1{1+a+ab} + \frac a{a+ab+{\color{#3D99F6}abc}} + \frac {ab}{ab+{\color{#3D99F6}abc} +{\color{#3D99F6}abc}a}\right| \\ & = \left|\frac 1{1+a+ab} + \frac a{a+ab+{\color{#3D99F6}1}} + \frac {ab}{ab+{\color{#3D99F6}1} +a}\right| \\ & = |1| \\ & = \boxed{1} \end{aligned}

Your solution is easier hehe.

Wildan Bagus Wicaksono - 3 years, 10 months ago

Log in to reply

There is usually a trick. We have to look for it.

Chew-Seong Cheong - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...