A, B, C

Geometry Level 3

In right angled triangle A B C ABC , A C B = 9 0 \angle ACB=90^\circ . If 2 tan A = sin B 2\tan A = \sin B , what does sin A \sin A equal?

2 ( sin 6 0 cos 4 5 ) 2 (\sin 60^\circ - \cos 45^\circ) tan 6 0 1 \tan 60^\circ - 1 cos 3 0 \cos 30^\circ 2 cos 4 5 sin 9 0 2\cos 45^\circ - \sin 90^\circ

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 12, 2015

Since A + B + C = 18 0 A + B + 9 0 = 18 0 B = 9 0 A \begin{aligned} \text{Since } \quad A + B + C & = 180^\circ \\ A + B + 90^ \circ & = 180^\circ \\ \Rightarrow B & = 90^\circ - A \end{aligned}

It is given that 2 tan A = sin B 2 sin A cos A = sin ( 9 0 A ) 2 sin A cos A = cos A 2 sin A = cos 2 A 2 sin A = 1 sin 2 A sin 2 A + 2 sin A 1 = 0 sin A = 2 ± 4 + 4 2 = 1 + 2 1 2 > 1 is rejected. = 2 ( 1 2 ) 1 = 2 cos 4 5 sin 9 0 \begin{aligned} \text{It is given that } \quad 2\tan A & = \sin B \\ 2\frac{\sin A}{\cos A} & = \sin (90^\circ - A) \\ 2\frac{\sin A}{\cos A} & = \cos A \\ 2\sin A & = \cos^2 A \\ 2\sin A & = 1 - \sin^2 A \\ \Rightarrow \sin^2 A + 2 \sin A - 1 & = 0 \\ \sin A & = \frac{-2\pm \sqrt{4+4}}{2}\\ & = - 1 + \sqrt{2} \quad \quad \quad \quad \quad \quad \small \color{#D61F06}{|-1-\sqrt{2}| > 1 \text{ is rejected.}}\\ & = 2 \left(\frac{1}{\sqrt{2}}\right) - 1 \\ & = \boxed{2\cos 45^\circ - \sin 90^\circ} \end{aligned}

Vasu Subramanian
Oct 11, 2015

Since ACB = 90, it implies that A + B = 90. Hence, sin B = cos A So, the given equation may be rewritten as 2 tan A = cos A. Multiply both sides by cos A. We, therefore, have 2 sin A = (cos A)^2 Let sin A = x. Therefore, the above equation may be further rewritten as 2x = 1-x^2 Solving this would yield x = root(2) - 1. (Since sine is range bound to [-1,+1], the other root of the quadratic - root(2) - 1 is ruled out). 2 cos 45 - sin 90 = 2*1/root(2) - 1 = root(2) - 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...