If a , b , c , and d are real numbers that satisfy the equation
a 2 + b 2 + c 2 + d 2 = a b + b c + c d + d a
Find the value of a − b + c − d .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Ok terima kasih atas solusinya #AzzamLabib
Haduh bang.... Jago sekali manipulasi anda :v
Kta tmen sy lebih mudah AM - GM :v . tp sy gk bisa :v
sudah dipost solusi saya yang am gm
We will use A M − G M inequality to show that a = b = c = d .
with A M − G M , we have a 2 + b 2 + c 2 + d 2 = 2 a 2 + b 2 + 2 b 2 + c 2 + 2 c 2 + d 2 + 2 d 2 + a 2 ≥ a 2 b 2 + b 2 c 2 + c 2 d 2 + d 2 a 2 = a b + b c + c d + a d
with equality hold when a = b = c = d which is same as the problem.
therefore, a − b + c − d = 0
Knp itu kok dibagi 2? Klo dijadikan ke AM - GM kan yg a 2 + b 2 + c 2 + d 2 hrus dibagi 4.
Log in to reply
itu sebenernya itu di AM GM satu satu , yang 2 a 2 + b 2 ≥ a 2 b 2 , terus sama yang lain . akhirnya di jumlahkan didapat seperti yang diminta
Log in to reply
Hmm blum paham hehe. Soalnya ana brusan belajar yg sperti itu.
Problem Loading...
Note Loading...
Set Loading...
a 2 + b 2 + c 2 + d 2 = a b + b c + c d + d a
a 2 − a b + b 2 + c 2 − b c − c d + d 2 − d a = 0 2 a 2 − a b + 2 b 2 + 2 b 2 − b c + 2 c 2 + 2 c 2 − c d + 2 d 2 + 2 a 2 + 2 d 2 − d a = 0 2 1 { ( a 2 − 2 a b + b 2 ) + ( b 2 − 2 b c + c 2 ) + ( c 2 − 2 c d + d 2 ) + ( d 2 − 2 a d + a 2 ) } = 0 2 1 { ( a − b ) 2 + ( b − c ) 2 + ( c − d ) 2 + ( d − a ) 2 } = 0 ( a − b ) 2 + ( b − c ) 2 + ( c − d ) 2 + ( d − a ) 2 = 0
So that
a − b = 0 ⇒ a = b
b − c = 0 ⇒ b = c
c − d = 0 ⇒ c = d
d − a = 0 ⇒ d = a
∴ a = b = c = d
Then a − b + c − d = 0 .