a a , b b , c c , and d d

Algebra Level 2

If a a , b b , c c , and d d are real numbers that satisfy the equation

a 2 + b 2 + c 2 + d 2 = a b + b c + c d + d a { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+{ d }^{ 2 }=ab+bc+cd+da

Find the value of a b + c d a - b + c - d .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

a 2 + b 2 + c 2 + d 2 = a b + b c + c d + d a { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+{ d }^{ 2 }=ab+bc+cd+da

a 2 a b + b 2 + c 2 b c c d + d 2 d a = 0 a 2 2 a b + b 2 2 + b 2 2 b c + c 2 2 + c 2 2 c d + d 2 2 + a 2 2 + d 2 2 d a = 0 1 2 { ( a 2 2 a b + b 2 ) + ( b 2 2 b c + c 2 ) + ( c 2 2 c d + d 2 ) + ( d 2 2 a d + a 2 ) } = 0 1 2 { ( a b ) 2 + ( b c ) 2 + ( c d ) 2 + ( d a ) 2 } = 0 ( a b ) 2 + ( b c ) 2 + ( c d ) 2 + ( d a ) 2 = 0 { a }^{ 2 }-ab+{ b }^{ 2 }+{ c }^{ 2 }-bc-cd+{ d }^{ 2 }-da=0\\ \frac { { a }^{ 2 } }{ 2 } -ab+\frac { { b }^{ 2 } }{ 2 } +\frac { { b }^{ 2 } }{ 2 } -bc+\frac { { c }^{ 2 } }{ 2 } +\frac { { c }^{ 2 } }{ 2 } -cd+\frac { { d }^{ 2 } }{ 2 } +\frac { { a }^{ 2 } }{ 2 } +\frac { { d }^{ 2 } }{ 2 } -da=0\\ \frac { 1 }{ 2 } \left\{ \left( { a }^{ 2 }-2ab+{ b }^{ 2 } \right) +\left( { b }^{ 2 }-2bc+{ c }^{ 2 } \right) +\left( { c }^{ 2 }-2cd+{ d }^{ 2 } \right) +\left( { d }^{ 2 }-2ad+{ a }^{ 2 } \right) \right\} =0\\ \frac { 1 }{ 2 } \left\{ { (a-b) }^{ 2 }+{ (b-c) }^{ 2 }+{ (c-d) }^{ 2 }+{ (d-a) }^{ 2 } \right\} =0\\ { (a-b) }^{ 2 }+{ (b-c) }^{ 2 }+{ (c-d) }^{ 2 }+{ (d-a) }^{ 2 }\quad =\quad 0

So that

a b = 0 a = b a - b = 0 \Rightarrow a = b

b c = 0 b = c b - c= 0 \Rightarrow b = c

c d = 0 c = d c - d = 0 \Rightarrow c = d

d a = 0 d = a d - a = 0 \Rightarrow d = a

a = b = c = d \therefore a = b = c = d

Then a b + c d = 0 a - b + c - d = 0 .

Ok terima kasih atas solusinya #AzzamLabib

Wildan Bagus Wicaksono - 3 years, 11 months ago

Haduh bang.... Jago sekali manipulasi anda :v

Azzam Labib - 3 years, 11 months ago

Kta tmen sy lebih mudah AM - GM :v . tp sy gk bisa :v

Wildan Bagus Wicaksono - 3 years, 11 months ago

sudah dipost solusi saya yang am gm

Azzam Labib - 3 years, 11 months ago
Azzam Labib
Jul 4, 2017

We will use A M G M AM-GM inequality to show that a = b = c = d a=b=c=d .

with A M G M AM-GM , we have a 2 + b 2 + c 2 + d 2 = a 2 + b 2 2 + b 2 + c 2 2 + c 2 + d 2 2 + d 2 + a 2 2 a 2 b 2 + b 2 c 2 + c 2 d 2 + d 2 a 2 = a b + b c + c d + a d a^2+b^2+c^2+d^2= \frac{a^2+b^2}{2} +\frac{b^2+c^2}{2} +\frac{c^2+d^2}{2} +\frac{d^2+a^2}{2} \\ \geq \sqrt{a^2b^2} +\sqrt{b^2c^2} +\sqrt{c^2d^2} +\sqrt{d^2a^2} = ab + bc + cd +ad

with equality hold when a = b = c = d a=b=c=d which is same as the problem.

therefore, a b + c d = 0 \boxed{a-b+c-d = 0}

Knp itu kok dibagi 2? Klo dijadikan ke AM - GM kan yg a 2 + b 2 + c 2 + d 2 { a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }+{ d }^{ 2 } hrus dibagi 4.

Wildan Bagus Wicaksono - 3 years, 11 months ago

Log in to reply

itu sebenernya itu di AM GM satu satu , yang a 2 + b 2 2 a 2 b 2 \frac{a^2 + b^2}{2} \geq \sqrt{a^2b^2} , terus sama yang lain . akhirnya di jumlahkan didapat seperti yang diminta

Azzam Labib - 3 years, 11 months ago

Log in to reply

Hmm blum paham hehe. Soalnya ana brusan belajar yg sperti itu.

Wildan Bagus Wicaksono - 3 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...