A basic inequality

Algebra Level 4

x 3 x + y z + y 3 y + x z + z 3 z + x y \large \frac{x^3}{x+\sqrt{yz}}+\frac{y^3}{y+\sqrt{xz}}+\frac{z^3}{z+\sqrt{xy}} If x , y , z x,y,z are positive reals satisfy x + y + z 3 x+y+z\geq 3 , find the minimum value of the expression above


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P C
Mar 1, 2016

Call the expression Q, it can be written as Q = x 4 x 2 + x y z + y 4 y 2 + y x z + z 4 z 2 + z x y Q=\frac{x^4}{x^2+x\sqrt{yz}}+\frac{y^4}{y^2+y\sqrt{xz}}+\frac{z^4}{z^2+z\sqrt{xy}} Now applying Titu's Lemma we get Q ( x 2 + y 2 + z 2 ) 2 x 2 + y 2 + z 2 + x y z ( x + y + z ) Q\geq\frac{(x^2+y^2+z^2)^2}{x^2+y^2+z^2+\sqrt{xyz}(\sqrt{x}+\sqrt{y}+\sqrt{z})} We have this row of inequalities (by Cauchy-Schwarz): 3 x y z ( x + y + z ) ( x y + y z + z x ) 2 ( x + y + z ) 2 3 ( x 2 + y 2 + z 2 ) 3\sqrt{xyz}(\sqrt{x}+\sqrt{y}+\sqrt{z})\leq (\sqrt{xy}+\sqrt{yz}+\sqrt{zx})^2\leq (x+y+z)^2\leq 3(x^2+y^2+z^2) Q ( x 2 + y 2 + z 2 ) 2 x 2 + y 2 + z 2 + x y z ( x + y + z ) x 2 + y 2 + z 2 2 ( x + y + z ) 2 6 3 2 \therefore Q\geq\frac{(x^2+y^2+z^2)^2}{x^2+y^2+z^2+\sqrt{xyz}(\sqrt{x}+\sqrt{y}+\sqrt{z})}\geq\frac{x^2+y^2+z^2}{2}\geq\frac{(x+y+z)^2}{6}\geq\frac{3}{2} The equality holds when x = y = z = 1 x=y=z=1

N o t e *Note : this problem can also be solved by AM-GM

@Gurīdo Cuong can you please explain how did you arrive at those 4 inequalities in the third step?

shivam mishra - 5 years, 3 months ago

Log in to reply

The first inequality can be written as 3 x y z ( y + x + z ) x y + y x + x z + 2 x y z ( x + y + z ) 3\sqrt{xyz}(\sqrt{y}+\sqrt{x}+\sqrt{z})\leq xy+yx+xz+2\sqrt{xyz}(\sqrt{x}+\sqrt{y}+\sqrt{z}) x y . x z + x z . y z + y z + x y x y + y z + x z \sqrt{xy}.\sqrt{xz}+\sqrt{xz}.\sqrt{yz}+\sqrt{yz}+\sqrt{xy}\leq xy+yz+xz Just applying Cauchy - Schwarz and you'll get this right The next inequality is just basically applying Cauchy - Schwarz for ( x , y , z ) (\sqrt{x},\sqrt{y},\sqrt{z}) and ( y , z , x (\sqrt{y},\sqrt{z},\sqrt{x} ). With the third one, you apply the inequality for ( x , y , z ) (x,y,z) and ( 1 , 1 , 1 ) (1,1,1)

P C - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...