A beautiful function

Calculus Level 4

0 1 ln ( Γ ( x ) ) d x \large \int_0^1 \ln ( \Gamma(x) ) \, dx

If the value of the integral above is equal to ln ( A π ) A \dfrac{ \ln(A \pi)}A

for some constant A A , find A A .

Notation : Γ ( ) \Gamma(\cdot) denotes the gamma function .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Refaat M. Sayed
Feb 26, 2016

We have I = 0 1 l n ( Γ ( x ) ) d x = 0 1 l n ( Γ ( 1 x ) ) d x I=\displaystyle\int \limits^{1}_{0}ln\left( \Gamma \left( x\right) \right) dx=\displaystyle\int \limits^{1}_{0}ln\left( \Gamma \left( 1-x\right) \right) dx So I = 1 2 0 1 l n ( Γ ( x ) Γ ( 1 x ) ) d x = 1 2 0 1 l n ( π sin ( π x ) ) d x I=\frac{1}{2} \displaystyle\int \limits^{1}_{0}ln\left( \Gamma \left( x\right) \Gamma \left( 1-x\right) \right) dx= \frac{1}{2} \displaystyle\int \limits^{1}_{0}ln\left( \frac{\pi }{\sin \left( \pi x\right) } \right) dx I = 1 2 0 1 l n ( π ) d x 1 2 0 1 l n ( s i n π x ) d x I= \frac{1}{2} \displaystyle\int \limits^{1}_{0}ln\left( \pi \right) dx-\frac{1}{2} \displaystyle\int \limits^{1}_{0}ln\left( sin\pi x\right) dx I = l n ( π ) 2 1 2 π 0 π l n ( sin ( x ) ) d x I=\frac{ln\left( \pi \right) }{2} -\frac{1}{2\pi } \displaystyle\int \limits^{\pi }_{0}ln\left( \sin \left( x\right) \right) dx I = l n ( π ) 2 1 π 0 π 2 l n ( sin ( x ) ) d x I =\frac{ln\left( \pi \right) }{2} -\frac{1}{\pi } \displaystyle\int \limits^{\frac{\pi }{2} }_{0}ln\left( \sin \left( x\right) \right) dx Finally I = l n ( π ) 2 1 π ( π l n ( 2 ) 2 ) = l n ( π ) 2 + l n ( 2 ) 2 = l n ( 2 π ) 2 I=\frac{ln\left( \pi \right) }{2} - \frac{1}{\pi } \left( \frac{-\pi ln\left( 2\right) }{2} \right) =\frac{ln\left( \pi \right) }{2} +\frac{ln\left( 2\right) }{2} =\frac{ln\left( 2\pi \right) }{2} So A = 2 A=\boxed {2} For 0 π 2 l n ( sin ( x ) ) d x \displaystyle\int \limits^{\frac{\pi }{2} }_{0}ln\left( \sin \left( x\right) \right) dx Let I 1 = 0 π 2 l n ( sin ( x ) ) = 0 π 2 l n ( cos ( x ) ) I_{1}=\displaystyle\int \limits^{\frac{\pi }{2} }_{0}ln\left( \sin \left( x\right) \right) =\displaystyle\int \limits^{\frac{\pi }{2} }_{0}ln\left( \cos \left( x\right) \right) So 2 I 1 = 0 π 2 l n sin ( 2 x ) 0 π 2 l n ( 2 ) d x 2I_{1}=\displaystyle\int \limits^{\frac{\pi }{2} }_{0}ln\sin \left( 2x\right) -\displaystyle\int \limits^{\frac{\pi }{2} }_{0}ln\left( 2\right) dx Whitch is equal to 2I_{1} =2\int \limits^{\frac{\pi }{4} }_{0}ln\left( \sin \left( 2x\right) \right) dx-\frac{\pi ln\left( 2\right) }{2} = \underbrace{\int \limits^{\frac{\pi }{2} }_{0}ln\left( \sin \left( x\right) \right) dx} \limits_{I_{1}}-\frac{\pi ln\left( 2\right) }{2} Finally 2 I 1 = I 1 π l n ( 2 ) 2 2I_{1}=I_{1}-\frac{\pi ln\left( 2\right) }{2} I 1 = π l n ( 2 ) 2 \boxed { I_{1}=\frac{-\pi ln\left( 2\right) }{2} }

Nice method. You could use raabe's formula.

Aditya Kumar - 5 years, 3 months ago

Log in to reply

Thanks for mention that :)

Refaat M. Sayed - 5 years, 3 months ago
Aditya Agarwal
Mar 2, 2016

Raabe's Formula ;)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...