Couldn't get any Fresher

Calculus Level 5

0 sin ( x 2 ) d x = ? \displaystyle\int_{0}^{\infty} \sin (x^2) \ \text{d}x = \ ?

Details and Assumptions

You can solve this using elementary function.

Check out my calculus set .


The answer is 0.6266.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Discussions for this problem are now closed

Fiki Akbar
Feb 23, 2015

From Euler Formula, we have e i x 2 = c o s ( x 2 ) i s i n ( x 2 ) e^{-i x^{2}} = cos(x^{2}) - i sin(x^{2}) So, s i n ( x 2 ) = I m ( e i x 2 ) sin(x^{2}) = - Im(e^{-i x^{2}})

Let, I = 0 e i x 2 d x I = \int_{0}^{\infty}\: e^{-i x^{2}} \:dx Now, 4 I 2 = e i ( x 2 + y 2 ) d x d y = : e i ( x 2 + y 2 ) : d A 4I^{2} = \int_{-\infty}^{\infty}\:\int_{-\infty}^{\infty}\: e^{-i (x^{2}+y^{2})} \:dxdy = \int:\int\:e^{-i (x^{2}+y^{2})}:dA Convert into polar coordinate, 4 I 2 = 0 0 2 π e i r 2 r d r d θ = π i 4I^{2} = \int_{0}^{\infty}\:\int_{0}^{2\pi}\:e^{-ir^{2}}\:r\:drd\theta = \frac{\pi}{i} Hence, we have, I = 1 2 π i I = \frac{1}{2}\sqrt{\frac{\pi}{i}} Since ( i ) = e i π / 4 \sqrt(i) = e^{i\pi/4} , then I = 1 2 π 2 ( 1 i ) I = \frac{1}{2}\sqrt{\frac{\pi}{2}}(1-i) So, we have 0 s i n ( x 2 ) d x = I m ( I ) = 1 2 π 2 = 0.627 \int_{0}^{\infty}\:sin(x^{2})\: dx = -Im(I) = \frac{1}{2}\sqrt{\frac{\pi}{2}} = 0.627

nice solution :-)

Kazem Sepehrinia - 6 years, 3 months ago
Kazem Sepehrinia
Feb 22, 2015

Let x 2 = t x^2=t , the integral ( I I ) becomes:

I = 0 sin t 2 t d t I=\int_{0}^{\infty} \frac{\sin t }{2\sqrt{t}} \text{d}t

Now we use the fact that:

1 2 t = 0 1 π e s 2 t d s \frac{1}{2\sqrt{t}}=\int_{0}^{\infty} \frac{1}{\sqrt{\pi}} e^{-s^2 t} \text{d}s

Substituting this back in the original integral gives a double integral:

I = 0 sin t 0 1 π e s 2 t d s d t I=\int_{0}^{\infty} \sin t \int_{0}^{\infty} \frac{1}{\sqrt{\pi}} e^{-s^2 t} \text{d}s \text{d}t

or

I = 1 π 0 0 sin t e s 2 t d t d s I=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \int_{0}^{\infty} \sin t \ e^{-s^2 t} \text{d}t \text{d}s

We know by laplace transforms that:

0 sin t e s 2 t d t = 1 1 + s 4 \int_{0}^{\infty} \sin t \ e^{-s^2 t} \text{d}t=\frac{1}{1+s^4}

Hence:

I = 1 π 0 1 1 + s 4 d s I=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{1}{1+s^4} \text{d}s

let s = 1 r s=\frac{1}{r}

I = 1 π 0 r 2 1 + r 4 d r = 1 π 0 s 2 1 + s 4 d s I=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{r^2}{1+r^4} \text{d}r=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{s^2}{1+s^4} \text{d}s

so

2 I = 1 π 0 1 + s 2 1 + s 4 d s 2I=\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{1+s^2}{1+s^4} \text{d}s

finally let z = s 1 s z=s-\frac{1}{s}

2 I = 1 π 1 2 + z 2 d z = 1 π 2 2 arctan [ z 2 ] = 1 π 2 2 π 2I=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{1}{2+z^2} \text{d}z=\frac{1}{\sqrt{\pi}} \frac{\sqrt{2}}{2} \arctan \left[ \frac{z}{\sqrt{2}} \right]_{-\infty}^{\infty}= \frac{1}{\sqrt{\pi}} \frac{\sqrt{2}}{2} \pi

I = 1 2 1 π 2 2 π = 2 π 4 = 0.6266 I=\frac{1}{2} \frac{1}{\sqrt{\pi}} \frac{\sqrt{2}}{2} \pi=\frac{\sqrt{2\pi}}{4}=0.6266

how did you think about the second step...please explain the algorithm. It was really nice question....Is this the only method to solve such problems.

manish bhargao - 6 years, 3 months ago

It is just experience, I learned it when solving a similar but simpler one:

0 sin x x d x \int_{0}^{\infty} \frac{\sin x}{x} \text{d} x

To change to a double integral and using laplace transforms, here I try to express 1 x \frac{1}{x} with an integral which bounds are also 0 0 and \infty .

Kazem Sepehrinia - 6 years, 3 months ago

From the above definition, we have: 0 s i n t 2 d t = lim x S ( x ) = π 8 \int_{0}^{\infty}sin\space t^2dt = \lim \limits_{x \to \infty} S(x) = \sqrt{\pi \over 8}

In addition, 0 c o s t 2 d t = lim x C ( x ) = π 8 \int_{0}^{\infty}cos\space t^2dt = \lim \limits_{x \to \infty} C(x) = \sqrt{\pi \over 8}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...