Limited edition

Calculus Level 4

lim α 0 e cos ( α n ) e α m = e 2 \large \lim_{\alpha\rightarrow 0}\frac{e^{\cos(\alpha^{n})}-e}{\alpha^{m}} = -\frac{e}{2}

Let m m and n n be two constant positive integers greater than 1 such that the equation above holds true.

Find the ratio m n \frac{m}{n} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kushal Bose
Jan 10, 2017

e lim x 0 e cos ( x n ) 1 1 x m = e lim x 0 e cos ( x n ) 1 1 cos ( x n ) 1 × cos ( x n ) 1 x m = e × 1 × lim x 0 cos ( x n ) 1 x m = e × lim x 0 2 sin 2 ( x n 2 ) ( x n 2 ) 2 × ( x n / 2 ) 2 x m = e 2 × lim x 0 x 2 n m \displaystyle e \, \lim_{x \to 0} \dfrac{e^{\cos (x^n)-1}-1}{x^m} \\ =e \, \displaystyle \lim_{x \to 0} \dfrac{e^{\cos (x^n)-1}-1}{\cos (x^n)-1} \times \dfrac{\cos (x^n)-1}{x^m} \\ = e \displaystyle \times 1 \times \lim_{x \to 0} \dfrac{\cos (x^n)-1}{x^m} \\ =-e \times \displaystyle \lim_{x \to 0} \dfrac{2 \sin^2 (\frac{x^n}{2})}{(\frac{x^n}{2})^2} \times \dfrac{(x^{n}/2)^2}{x^m} \\ =\frac{-e}{2} \times \displaystyle \lim_{x \to 0}{x^{2n-m}}

So, 2 n m = 0 2 n = m 2n-m=0 \implies 2n=m

So the ratio m n \dfrac{m}{n} is 2 2

is this from jee advanced ' 15?

Kunal Gupta - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...